Advertisement

Extraction of the Intercellular Skeleton from 2D Images of Embryogenesis Using Eikonal Equation and Advective Subjective Surface Method

  • Paul Bourgine
  • Peter Frolkovič
  • Karol Mikula
  • Nadine Peyriéras
  • Mariana Remešíková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5567)

Abstract

We suggest an efficient method for automatic detection of the intercellular skeleton in microscope images of early embryogenesis. The method is based on the solution of two advective PDEs. First, we solve numerically the time relaxed eikonal equation in order to obtain the signed distance function to a given set – a set of points representing cell centers or a set of closed curves representing segmented inner borders of cells. The second step is a segmentation process driven by the advective version of subjective surface equation where the velocity field is given by the gradient of the computed distance function. The first equation is discretized by Rouy-Tourin scheme and we suggest a fixing strategy that significantly improves the speed of the computation. The second equation is solved using a classical upwind strategy. We present several test examples and we show a practical application - the intercellular skeleton extracted from a 2D image of a zebrafish embryo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frolkovič, P., Mikula, K., Peyriéras, N., Sarti, A.: A counting number of cells and cell segmentation using advection-diffusion equations. Kybernetika 43(6), 817–829 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Mikula, K., Peyriéras, N., Remešíková, M., Sarti, A.: 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique. In: Proceedings of FVCA5 – 5th International Symposium on Finite Volumes for Complex Applications. Hermes Publ., Paris (2008)Google Scholar
  3. 3.
    Rouy, E., Tourin, A.: Viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis 29(3), 867–884 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sarti, A., Malladi, R., Sethian, J.A.: Subjective Surfaces: A Method for Completing Missing Boundaries. Proc. Nat. Acad. Sci. 12(97), 6258–6263 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry. In: Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, New York (1999)Google Scholar
  6. 6.
    Tassy, O., Daian, F., Hudson, C., Bertrandt, V., Lemaire, P.: A quantitative approach to the study of the cell shapes and interactions during early chordate embryogenesis. Currrent Biology 16, 345–358 (2006)CrossRefGoogle Scholar
  7. 7.
    Zhao, H.-K.: Fast sweeping method for eikonal equations. Mathematics of Computation 74, 603–627 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhao, H.-K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proc. IEEE workshop on variational and level set methods - VLSM 2001, Vancouer, pp. 194–201 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paul Bourgine
    • 1
  • Peter Frolkovič
    • 2
  • Karol Mikula
    • 2
  • Nadine Peyriéras
    • 3
  • Mariana Remešíková
    • 2
  1. 1.CREA, Ecole Polytechnique-CNRSParisFrance
  2. 2.Department of MathematicsSlovak University of TechnologyBratislavaSlovakia
  3. 3.CNRS-DEPSNGif-sur-YvetteFrance

Personalised recommendations