An Unconstrained Multiphase Thresholding Approach for Image Segmentation

  • Benjamin Berkels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5567)

Abstract

In this paper we provide a method to find global minimizers of certain non-convex 2-phase image segmentation problems. This is achieved by formulating a convex minimization problem whose minimizers are also minimizers of the initial non-convex segmentation problem, similar to the approach proposed by Nikolova, Esedoḡlu and Chan. The key difference to the latter model is that the new model does not involve any constraint in the convex formulation that needs to be respected when minimizing the convex functional, neither explicitly nor by an artificial penalty term. This approach is related to recent results by Chambolle. Eliminating the constraint considerably simplifies the computational difficulties, and even a straightforward gradient descent scheme leads to a reliable computation of the global minimizer. Furthermore, the model is extended to multiphase segmentation along the lines of Vese and Chan. Numerical results of the model applied to the classical piecewise constant Mumford-Shah functional for two, four and eight phase segmentation are shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure Applied Mathematics 42, 577–685 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3), 271–293 (2002)CrossRefMATHGoogle Scholar
  3. 3.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Shen, J.: Γ-convergence approximation to piecewise constant Mumford-Shah segmentation. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 499–506. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Esedoḡlu, S., Tsai, Y.H.R.: Threshold dynamics for the piecewise constant Mumford-Shah functional. Journal of Computational Physics 211(1), 367–384 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Merriman, B., Bence, J.K., Osher, S.J.: Diffusion generated motion by mean curvature. CAM Report 92-18, UCLA (1992)Google Scholar
  8. 8.
    Alvino, C.V., Yezzi, A.J.: Fast Mumford-Shah segmentation using image scale space bases. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6498 (2007)Google Scholar
  9. 9.
    Nikolova, M., Esedoḡlu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics 66(5), 1632–1648 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chambolle, A.: An algorithm for mean curvature motion. Interfaces and free Boundaries 6, 195–218 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. CAM Report 08-19, UCLA (2008)Google Scholar
  12. 12.
    Alter, F., Caselles, V., Chambolle, A.: A characterization of convex calibrable sets in ℝN. Mathematische Annalen 332(2), 329–366 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)MATHGoogle Scholar
  14. 14.
    Kosmol, P.: Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben, 2nd edn. Teubner, Stuttgart (1993)MATHGoogle Scholar
  15. 15.
    Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2), 151–167 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)MathSciNetGoogle Scholar
  17. 17.
    Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing 15(5), 1171–1181 (2006)CrossRefMATHGoogle Scholar
  19. 19.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Daubechies, I., Defrise, M., de Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57(11), 1413–1457 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Benjamin Berkels
    • 1
  1. 1.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations