Advertisement

Game-Theoretic Approaches to Optimization Problems in Communication Networks

  • Vittorio BilòEmail author
  • Ioannis CaragiannisEmail author
  • Angelo FanelliEmail author
  • Michele FlamminiEmail author
  • Christos KaklamanisEmail author
  • Gianpiero MonacoEmail author
  • Luca MoscardelliEmail author
Chapter
Part of the Texts in Theoretical Computer Science. An EATCS Series book series (TTCS)

Abstract

In this chapter we consider fundamental optimization problems arising in communication networks. We consider scenarios where there is no central authority that coordinates the network users in order to achieve efficient solutions. Instead, the users act in an uncoordinated and selfish manner and reach solutions to the above problems that are consistent only with their selfishness. In this sense, the users act aiming to optimize their own objectives with no regard to the globally optimum system performance. Such a behavior poses several intriguing questions ranging from the definition of reasonable and practical models for studying it to the quantification of the efficiency loss due to the lack of users’ cooperation. We present several results we achieved recently in this research area and propose interesting future research directions.

Key words

non-cooperative networks strategic games Nash equilibria price of anarchy price of stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by the European Union under the IST FET Integrated Project AEOLUS and EU COST action 293 – Graphs and Algorithms in Communication Networks (GRAAL) – and by a “Caratheodory” research grant from the University of Patras.

References

  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. In: Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS ’06), LNCS 3884, pp. 218-229, 2006Google Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J. M., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS ’04), IEEE Computer Society, pp. 295-304, 2004Google Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network design with selfish agents. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC ’03). ACM Press, pp. 511-520, 2003Google Scholar
  4. 4.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05), ACM Press, pp. 57-66, 2005Google Scholar
  5. 5.
    Azar Y., Epstein, A.: The hardness of network design for unsplittable flow with selfish users. In: Proceedings of the 3rd Workshop on Approximation and Online Algorithms (WAOA ’05), LNCS 3879, pp. 41-54, 2005Google Scholar
  6. 6.
    Azar, Y., Jain, K., Mirrokni, V. S.: (Almost) optimal coordination mechanisms for unrelated machine scheduling. In: Proceedings of the 19th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA ’08), pp. 323-332, 2008Google Scholar
  7. 7.
    Bilò, V.: The price of Nash equilibria in multicast transmission games. In: Proceedings of the 18th International Symposium on Algorithms and Computation (ISAAC ’07), LNCS 4835, pp. 390-401, 2007Google Scholar
  8. 8.
    Bilò, V., Fanelli, A., Flammini, M., Melideo, G., Moscardelli, L.: Designing fast converging cost sharing methods for multicast transmissions. Theory of Computing Systems, online first, 2009Google Scholar
  9. 9.
    Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: Graphical congestion games with linear latencies. In: Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’08), pp. 194-196, 2008Google Scholar
  10. 10.
    Moscardelli, L.: When ignorance helps: graphical multicast cost sharing games. In: Proceedings of the 32nd International Symposium on Mathematical Foundations of Computer Science (MFCS ’08), LNCS 5162, pp. 108-119, 2008Google Scholar
  11. 11.
    Bilò, V., Flammini, M.: Extending the notion of rationality of selfish agents: second order Nash equilibria. In: Proceedings of the 32nd International Symposium on Mathematical Foundations of Computer Science (MFCS ’07), LNCS 4708, pp. 621-632, 2007Google Scholar
  12. 12.
    Bilò, V., Flammini, M., Moscardelli, L.: On Nash equilibria in non-cooperative all-optical networks. In: Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science (STACS ’05), LNCS 3404, pp. 448-459, 2005Google Scholar
  13. 13.
    Braess, D.: Über ein Paradoxon der Verkehrsplanung. Unternehmensforschung, 12:258-268, 1968zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. In: Proceedings of the 20th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA ’09), pp. 815–824, 2009Google Scholar
  15. 15.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., and Moscardelli, L.: Tight bounds for selfish and greedy load balancing. In: Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP ’06), LNCS 4051, Part I, pp. 311-322, 2006Google Scholar
  16. 16.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Taxes for linear atomic congestion games. In: Proceedings of the 14th Annual European Symposium on Algorithms (ESA ’06), LNCS 4168, pp. 184-195, 2006Google Scholar
  17. 17.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Improving the efficiency of load balancing games through taxes. In: Proceedings of the 4th International Workshop on Internet and Network Economics (WINE ’08), LNCS 5385, pp. 374-385, 2008Google Scholar
  18. 18.
    Charikar, M., Mattieu, C., Karloff, H., Naor, J., Saks, M.: Best response dynamics in multicast cost sharing. In: Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’08), pp. 70-76, 2008Google Scholar
  19. 19.
    Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative multicast and facility location games. In: Proceedings of the 7th ACM Conference on Electronic Commerce (EC ’06), ACM Press, pp. 72-81, 2006Google Scholar
  20. 20.
    Chen, H., Roughgarden, T., Valiant, G.: Designing networks with good equilibria. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’08), ACM Press, pp. 854-863, 2008Google Scholar
  21. 21.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05), ACM Press, pp. 67-73, 2005Google Scholar
  22. 22.
    Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equilibria of linear congestion games. In Proceedongs of the 13th Annual European Symposium on Algorithms (ESA ’05), LNCS 3669, pp. 59-70, 2005Google Scholar
  23. 23.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In: Proceedings of the 31st Annual International Colloquium on Automata, Languages, and Programming (ICALP ’04), LNCS 3142, pp. 345-357, 2004Google Scholar
  24. 24.
    Christodoulou, G., Mirrokni, V., Sidiropoulos, A.: Convergence and approximation in potential games. In: Proceedings of the 23rd Symposium on Theoretical Aspects of Computer Science (STACS ’06), LNCS 3884, Springer, pp. 349-260, 2006Google Scholar
  25. 25.
    Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC ’03), ACM Press, pp. 521-530, 2003Google Scholar
  26. 26.
    Fanelli, A., Flammini, M., Moscardelli, L.: On the convergence of multicast games in directed networks. In: Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’07), ACM Press, pp. 330-338, 2007Google Scholar
  27. 27.
    Fanelli, A., Flammini, M., Moscardelli, L.: The speed of convergence in congestion games under best-response dynamics. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP ’08), LNCS 5125. Part I, pp. 796-807, 2008Google Scholar
  28. 28.
    Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stability for designing undirected networks with fair cost allocations. In: Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP ’06), LNCS 4051, Part I, pp. 608-618, 2006Google Scholar
  29. 29.
    Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’04), IEEE Computer Society, pp. 277-285, 2004Google Scholar
  30. 30.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theoretical Computer Science, 348(2-3): 226-239, 2005zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Immorlica, N., Li, L., Mirrokni, V. S., Schulz, A.: Coordination mechanisms for selfish scheduling. In: Proceedings of the 1st Workshop on Internet and Network Economics (WINE ’05), LNCS 3828, pp. 55-69, 2005Google Scholar
  32. 32.
    Karakostas, G., Kolliopoulos, S.: Edge pricing of multicommodity networks for heterogeneous selfish users. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’04), IEEE Computer Society, pp. 268-276, 2004Google Scholar
  33. 33.
    Kleinberg, J.: The small-world phenomenon: an algorithm perspective. In: Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC ’00), ACM Press, pp. 163-170, 2000Google Scholar
  34. 34.
    Kleinberg, J.: Small-world phenomena and the dynamics of information. In: Proceedings of the 14th Advances in Neural Information Processing Systems (NIPS ’01), pp. 431-438, 2001Google Scholar
  35. 35.
    Koutsoupias, E., Papadimitriou, C. H.: Worst-case Equilibria. In: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS ’99), LNCS 1653, pp. 404-413, 1999Google Scholar
  36. 36.
    Mirrokni, V. S., Vetta, A.: Convergence issues in competitive games. In: Proceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX ’04), LNCS 3122, pp. 183-194, 2004Google Scholar
  37. 37.
    Monderer, D., Shapley, L. S.: Potential games. Games and Economic Behavior. 14:124-143, 1996zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Nash, J.: Equilibrium points in n-person games. In: Proceedings of the National Academy of Sciences, volume 36, pp. 48-49, 1950zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. V.: Algorithmic game theory. Cambridge University Press, 2007Google Scholar
  40. 40.
    Pigou, A. C.: The economics of welfare. Macmillan, 1920Google Scholar
  41. 41.
    Rosenthal, R. W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory, 2:65-67, 1973zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Roughgarden, T.: Stackelberg scheduling strategies. SIAM Journal on Computing, 33(2): 332-350, 2004zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Roughgarden, T.: On the severity of Braess’s Paradox: designing networks for selfish users is hard. Journal of Computer and System Sciences, 72(5): 922-953, 2006zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM, 49(2): 236-259, 2002CrossRefMathSciNetGoogle Scholar
  45. 45.
    Shapley, L. S.: The value of n-person games. Contributions to the theory of games, pp. 31-40, Princeton University Press, 1953Google Scholar
  46. 46.
    Suri, S., Tóth, C., Zhou, Y.: Selfish load balancing and atomic congestion games. Algorithmica, 47(1): 79-96, 2007zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SalentoLecceItaly
  2. 2.Computer Technology Institute & Department of Computer Engineering and InformaticsUniversity of PatrasRioGreece
  3. 3.Dipartimento di InformaticaUniversità degli Studi dell’AquilaL’AquilaItaly

Personalised recommendations