Recognition of Users’ Activities Using Constraint Satisfaction

  • Swapna Reddy
  • Ya’akov Gal
  • Stuart M. Shieber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5535)


Ideally designed software allow users to explore and pursue interleaving plans, making it challenging to automatically recognize user interactions. The recognition algorithms presented use constraint satisfaction techniques to compare user interaction histories to a set of ideal solutions. We evaluate these algorithms on data obtained from user interactions with a commercially available pedagogical software, and find that these algorithms identified users’ activities with 93% accuracy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pollack, M.: Intelligent technology for an aging population: The use of AI to assist elders with cognitive impairment. AI Magazine 26(9) (2006)Google Scholar
  2. 2.
    Gal, Y., Yamangil, E., Rubin, A., Shieber, S.M., Grosz, B.J.: Towards collaborative intelligent tutors: Automated recognition of users’ strategies. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Lesh, N., Rich, C., Sidner, C.: Using Plan Recognition in Human-Computer Collaboration, pp. 23–32 (1999)Google Scholar
  4. 4.
    Anderson, J.R., Corbett, A.T., Koedinger, K., Pelletier, R.: Cognitive tutors: Lessons learned. The Journal of Learning Sciences 4(2), 167–207 (1995)CrossRefGoogle Scholar
  5. 5.
    Bauer, M.: Acquisition of user preferences for plan recognition. In: Proceedings of the Fifth International Conference on User Modeling, pp. 105–112 (1996)Google Scholar
  6. 6.
    Lesh, N.: Adaptive Goal Recognition. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 1208–1214. Morgan Kaufmann, San Francisco (1997)Google Scholar
  7. 7.
    Conati, C., Gertner, A., VanLehn, K.: Using bayesian networks to manage uncertainty in student modeling. Journal of User Modeling and User-Adapted Interaction 12(4), 371–417 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Corebette, A., McLaughlin, M., Scarpinatto, K.: Modeling student knowledge: Cognitive tutors in high school and college. User Modeling and User-Adapted Interaction 10, 81–108 (2000)CrossRefGoogle Scholar
  9. 9.
    Konold, C., Miller, C.: TinkerPlots Dynamic Data Exploration 1.0. Key. Curriculum Press (2004)Google Scholar
  10. 10.
    Hammerman, J.K., Rubin, A.: Strategies for managing statistical complexity with new software tools. Statistics Education Research Journal 3(2), 17–41 (2004)Google Scholar
  11. 11.
    Grosz, B., Kraus, S.: The evolution of sharedplans. In: Foundations and Theories of Rational Agency, pp. 227–262 (1999)Google Scholar
  12. 12.
    Pollack, M.: Plans as complex mental attitudes. MIT Press, Cambridge (1990)Google Scholar
  13. 13.
    Reddy, S., Gal, Y., Shieber, S.M.: Recognition of users’ activities using constraint satisfaction. Technical Report TR-05-09, Harvard University (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Swapna Reddy
    • 1
  • Ya’akov Gal
    • 1
  • Stuart M. Shieber
    • 1
  1. 1.School of Engineering and Applied SciencesHarvard UniversityUSA

Personalised recommendations