Modeling User Affect from Causes and Effects

  • Cristina Conati
  • Heather Maclaren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5535)


We present a model of user affect to recognize multiple user emotions during interaction with an educational computer game. Our model deals with the high level of uncertainty involved in recognizing a variety of user emotions by probabilistically combining information on both the causes and effects of emotional reactions. In previous work, we presented the performance and limitations of the model when using only causal information. In this paper, we discuss the addition of diagnostic information on user affective valence detected via an EMG sensor, and present an evaluation of the resulting model.


Game Playing Educational Game Conditional Probability Table Causal Information Affective Valence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Craig, S.D., Graesser, A.C., Sullins, J., Gholson, B.: Affect and Learning: An Exploratory Look into the Role of Affect in Learning with AutoTutor. Journal of Educational Media 29 (2004)Google Scholar
  2. 2.
    Conati, C.: Probabilistic Assessment of User’s Emotions in Educational Games. Journal of Applied Artificial Intelligence 16(7-8), 555–575 (2002)CrossRefGoogle Scholar
  3. 3.
    Conati, C., Mclaren, H.: Data-driven Refinement of a Probabilistic Model of User Affect. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS, vol. 3538, pp. 40–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bosma, W., André, E.: Exploiting Emotions to Disambiguate Dialogue Acts. In: IUI 2004, Int. Conf. on Intelligent User Interfaces (2004)Google Scholar
  5. 5.
    Kapoor, A., Picard, R.W.: Multimodal Affect Recognition in Learning Environments. In: 13th Annual ACM Int. Conf. on Multimedia (2005)Google Scholar
  6. 6.
    McQuiggan, S., Lee, S., Lester, J.: Early Prediction of Student Frustration. In: 2nd Int. Conf. on Affective Computing and Intelligent Interactions (2007)Google Scholar
  7. 7.
    Zakharov, K., Mitrovic, A., Johnston, L.: Toward Emotionally Intelligent Pegadogical agents. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 19–28. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Thayer, R.E.: The biopsychology of mood and arousal. Oxford University Press, New Yok (1989)Google Scholar
  9. 9.
    Prendinger, H., Mori, J., Ishizuka, M.: Recognizing, Modeling, and Responding to Users’ Affective States. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS, vol. 3538, pp. 60–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Yannakakis, G.N., Hallam, J., Lund, H.H.: Entertainment Capture through Heart Rate Activity in Physical Interactive Playgrounds. User Modeling and User-Adapted Interaction 18(1-2) (2008)Google Scholar
  11. 11.
    Mandryk, R.L., Inkpen, K.M., Calvert, T.W.: Using Psychophysiological Techniques to Measure User Experience with Entertainment Technologes. Journal of Behavior and Information Technology 25 (2006)Google Scholar
  12. 12.
    D’Mello, S.K., Craig, S.D., Witherspoon, A.W., McDaniel, B.T., Graesser, A.C.: Automatic Detection of Learner’s Affect from Conversational Cues. User Modeling and User-Adapted Interaction 18(1) (2008)Google Scholar
  13. 13.
    Conati, C., Zhao, X.: Building and Evaluating an Intelligent Pedagogical Agent to Improve the Effectiveness of an Educational Game. In: Proc. of IUI 2004, Int. Conf. on Intelligent User Interfaces, Island of Madeira, Portugal, pp. 6–13 (2004)Google Scholar
  14. 14.
    Kim, J., André, E.: Emotion Recognition Using Physiological and Speech Signal in Short-Term Observation. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds.) PIT 2006. LNCS, vol. 4021, pp. 53–64. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Ortony, A., Clore, G.L., Collins, A.: The Cognitive Stucture of Emotions. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  16. 16.
    Lang, P., Greenwald, M., Bradley, M., Hamm, A.: Look at Pictures: Affective, Facial, Visceral, and Behavioral Reactions. Psychophysiology 30 (1993)Google Scholar
  17. 17.
    Scheirer, J., Fernandez, R., Picard, R.W.: Expression Glasses: A Wearable Device for Facial Expression Recognition. In: Proceedings of CHI 1999, Human Factors in Computer Systems, Pittsburgh, PA (1999)Google Scholar
  18. 18.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  19. 19.
    Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  20. 20.
    Conati, C., Maclaren, H.: Empirically Building and Evaluating a Probabilistic Model of User Affect. User Modeling and User-Adapted Interaction (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cristina Conati
    • 1
  • Heather Maclaren
    • 1
  1. 1.Computer Science DepartmentUniversity of British ColumbiaVancouver

Personalised recommendations