Collaborative Filtering Is Not Enough? Experiments with a Mixed-Model Recommender for Leisure Activities

  • Nicolas Ducheneaut
  • Kurt Partridge
  • Qingfeng Huang
  • Bob Price
  • Mike Roberts
  • Ed H. Chi
  • Victoria Bellotti
  • Bo Begole
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5535)

Abstract

Collaborative filtering (CF) is at the heart of most successful recommender systems nowadays. While this technique often provides useful recommendations, conventional systems also ignore data that could potentially be used to refine and adjust recommendations based on a user’s context and preferences. The problem is particularly acute with mobile systems where information delivery often needs to be contextualized. Past research has also shown that combining CF with other techniques often improves the quality of recommendations. In this paper, we present results from an experiment assessing user satisfaction with recommendations for leisure activities that are obtained from different combinations of these techniques. We show that the most effective mix is highly dependent on a user’s familiarity with a geographical area and discuss the implications of our findings for future research.

Keywords

Recommender systems hybrid models evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Sankaranarayanan, S.S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems 23(1) (2005)Google Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. 3.
    Bellotti, V., Begole, J., Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E., King, T., Newman, M., Partridge, K., Price, B., Rasmussen, P., Roberts, M., Schiano, D., Walendowski, A.: Activity-based serendipitous recommendations with the Magitti mobile leisure guide. In: Proceedings of CHI 2008 (2008)Google Scholar
  4. 4.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of UAI 1998, pp. 43–52. Morgan Kaufmann, San Francisco (1998)Google Scholar
  5. 5.
    Burke, R.: Hybrid recommender systems: survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a context-aware electronic tourist guide: some issues and experiences. In: Proceedings of CHI 2000, pp. 17–24. ACM, New York (2000)Google Scholar
  7. 7.
    Cosley, D., Lam, S.K., Albert, I., Konstan, J., Riedl, J.: Is Seeing Believing? How Recommender Systems Influence Users’ Opinions. In: Proceedings of CHI 2003, pp. 575–592. ACM, New York (2003)Google Scholar
  8. 8.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an Information Tapestry. Communications of the ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  9. 9.
    Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of CSCW 2000, pp. 241–250. ACM, New York (2000)Google Scholar
  10. 10.
    Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  11. 11.
    Kurtenbach, G., Sellen, A., Buxton, W.: An empirical evaluation of some articulatory and cognitive aspects of “marking menus”. Human Computer Interaction 8(1), 1–23 (1993)CrossRefGoogle Scholar
  12. 12.
    le Cessie, S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Applied statistics 41(1), 191–201 (1992)CrossRefMATHGoogle Scholar
  13. 13.
    McNee, S., Kapoor, N., Konstan, J.: Dont look stupid: avoiding pitfalls when recommending research papers. In: Proceedings of CSCW 2006, pp. 171–180. ACM, New York (2006)Google Scholar
  14. 14.
    McNee, S., Riedl, J., Konstan, J.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI 2006 Extended Abstracts, pp. 1097–1101. ACM, New York (2006)Google Scholar
  15. 15.
    Miller, B., Albert, I., Lam, S.K., Konstan, J., Riedl, J.: MovieLens Unplugged: Experiences with a Recommender System on Four Mobile Devices. In: Proceedings of HCI 2003. British HCI Group (2003)Google Scholar
  16. 16.
    Poslad, S., Laamanen, H., Malaka, R., Nick, A., Buckle, P., Zipf, A.: CRUMPET: Creation of user-friendly mobile services personalised for tourism. In: Proceedings of 3G, pp. 26–28 (2001)Google Scholar
  17. 17.
    Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007)CrossRefGoogle Scholar
  18. 18.
    Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Proceedings of EC 1999, pp. 158–166. ACM, New York (1999)Google Scholar
  19. 19.
    Schafer, J.B., Konstan, J., Riedl, J.: Meta-recommendation systems: user-controlled integration of diverse recommendations. In: Proceedings of CIKM 2002, pp. 43–51. ACM, New York (2002)Google Scholar
  20. 20.
    Schiano, D., Elliott, A., Bellotti, V.: Tokyo youth at leisure: towards the design of new media to support leisure planning and practice. In: CHI 2006 Extended Abstracts, pp. 309–314. ACM, New York (2006)Google Scholar
  21. 21.
    Tung, H.-W., Soo, V.-W.: A Personalized Restaurant Recommender Agent for Mobile E-Service. In: Proceedings of EEE 2004, pp. 259–262 (2004)Google Scholar
  22. 22.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nicolas Ducheneaut
    • 1
  • Kurt Partridge
    • 1
  • Qingfeng Huang
    • 1
  • Bob Price
    • 1
  • Mike Roberts
    • 1
  • Ed H. Chi
    • 1
  • Victoria Bellotti
    • 1
  • Bo Begole
    • 1
  1. 1.Palo Alto Research CenterPalo AltoUSA

Personalised recommendations