Google Shared. A Case-Study in Social Search

  • Barry Smyth
  • Peter Briggs
  • Maurice Coyle
  • Michael O’Mahony
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5535)


Web search is the dominant form of information access and everyday millions of searches are handled by mainstream search engines, but users still struggle to find what they are looking for, and there is much room for improvement. In this paper we describe a novel and practical approach to Web search that combines ideas from personalization and social networking to provide a more collaborative search experience. We described how this has been delivered by complementing, rather than competing with, mainstream search engines, which offers considerable business potential in a Google-dominated search marketplace.


Search Experience Social Networking Service Primary Promotion Promotion Candidate Search Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amershi, S., Morris, M.R.: Cosearch: a system for co-located collaborative web search. In: CHI, pp. 1647–1656 (2008)Google Scholar
  2. 2.
    Balfe, E., Smyth, B.: Case-based collaborative web search. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 489–503. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boydell, O., Smyth, B.: Enhancing case-based, collaborative web search. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp. 329–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Coyle, M., Smyth, B.: Supporting intelligent web search. ACM Trans. Internet Techn. 7(4) (2007)Google Scholar
  5. 5.
    Coyle, M., Smyth, B.: (web search) shared: Social aspects of a collaborative, community-based search network. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 103–112. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. Communications of the ACM 30(11), 964–971 (1987)CrossRefGoogle Scholar
  7. 7.
    Glance, N.S.: Community Search Assistant. In: Proceedings of the International Conference on Intelligent User Interfaces, pp. 91–96. ACM Press, New York (2001)Google Scholar
  8. 8.
    Lawrence, S., Lee Giles, C.: Accessibility of Information on the Web. Nature 400(6740), 107–109 (1999)CrossRefGoogle Scholar
  9. 9.
    Lawrence, S.: Context in Web Search. IEEE Data Engineering Bulletin 23(3), 25–32 (2000)Google Scholar
  10. 10.
    Liu, F., Yu, C., Meng, W.: Personalized Web Search for Improving Retrieval Effectiveness. IEEE Transactions on Knowledge and Data Engineering 16(1), 28–40 (2004)CrossRefGoogle Scholar
  11. 11.
    Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the world wide web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Morris, M.R.: A survey of collaborative web search practices. In: CHI, pp. 1657–1660 (2008)Google Scholar
  13. 13.
    Morris, M.R., Horvitz, E.: S\(^{\mbox{3}}\): Storable, shareable search. INTERACT (1), 120–123 (2007)Google Scholar
  14. 14.
    Morris, M.R., Horvitz, E.: Searchtogether: an interface for collaborative web search. In: UIST, pp. 3–12 (2007)Google Scholar
  15. 15.
    Nielsen, J.: Participation inequality: Lurkers vs. contributors in internet communities (2006),
  16. 16.
    O’Day, V.L., Jeffries, R.: Orienteering in an information landscape: how information seekers get from here to there. In: Proceedings of the SIGCHI conference on Human factors in computing systems (CHI 1993), pp. 438–445. ACM Press, New York (1993)CrossRefGoogle Scholar
  17. 17.
    Pickens, J., Golovchinsky, G., Shah, C., Qvarfordt, P., Back, M.: Algorithmic mediation for collaborative exploratory search. In: SIGIR, pp. 315–322 (2008)Google Scholar
  18. 18.
    Smyth, B.: A community-based approach to personalizing web search. IEEE Computer 40(8), 42–50 (2007)CrossRefGoogle Scholar
  19. 19.
    Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting query repetition and regularity in an adaptive community-based web search engine. User Model. User-Adapt. Interact. 14(5), 383–423 (2004)CrossRefGoogle Scholar
  20. 20.
    Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the web: the public and their queries. Journal of the American Society for Information Science and Technology 52(3), 226–234 (2001)CrossRefGoogle Scholar
  21. 21.
    Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests and activities. In: SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 449–456. ACM Press, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Barry Smyth
    • 1
  • Peter Briggs
    • 1
  • Maurice Coyle
    • 1
  • Michael O’Mahony
    • 1
  1. 1.CLARITY: Centre for Sensor Web Technologies School of Computer Science and InformaticsUniversity College DublinIreland

Personalised recommendations