Grocery Product Recommendations from Natural Language Inputs

  • Petteri Nurmi
  • Andreas Forsblom
  • Patrik Floréen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5535)


Shopping lists play a central role in grocery shopping. Among other things, shopping lists serve as memory aids and as a tool for budgeting. More interestingly, shopping lists serve as an expression and indication of customer needs and interests. Accordingly, shopping lists can be used as an input for recommendation techniques. In this paper we describe a methodology for making recommendations about additional products to purchase using items on the user’s shopping list. As shopping list entries seldom correspond to products, we first use information retrieval techniques to map the shopping list entries into candidate products. Association rules are used to generate recommendations based on the candidate products. We evaluate the usefulness and interestingness of the recommendations in a user study.


Association Rule Association Rule Mining Retrieval Result Normalize Discount Cumulative Gain Shopping List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassett, R., Beagan, B., Chapman, G.E.: Grocery lists: connecting family, household and grocery store. British Food Journal 110(2), 206–217 (2008)CrossRefGoogle Scholar
  2. 2.
    Thomas, A., Garland, R.: Grocery shopping: list and non-list usage. Marketing Intelligence & Planning 22, 623–635 (2004)CrossRefGoogle Scholar
  3. 3.
    Block, L.G., Morwitz, V.G.: Shopping lists as an external memory aid for grocery shopping: Influences on list writing and list fulfillment. Journal of Consumer Psychology 8(4), 343–375 (1999)CrossRefGoogle Scholar
  4. 4.
    Nurmi, P., Lagerspetz, E., Buntine, W., Floréen, P., Kukkonen, J.: Product retrieval for grocery stores. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 781–782. ACM, New York (2008)Google Scholar
  5. 5.
    Nurmi, P., Lagerspetz, E., Buntine, W., Floréen, P., Kukkonen, J., Peltonen, P.: Natural language retrieval of grocery products. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM 2008). ACM, New York (2008)Google Scholar
  6. 6.
    Robertson, S., Walker, S., Beaulieu, M.M., Gatford, M., Payne, A.: Okapi at TREC-4. In: NIST Special Publication 500-236: The Fourth Text REtrieval Conference (TREC-4), pp. 73–96 (1995)Google Scholar
  7. 7.
    Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted fields. In: Proceedings of the 13th ACM International Conference on Information and Knowledge Management (CIKM), pp. 42–49. ACM, New York (2004)Google Scholar
  8. 8.
    Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proceedings of the 21st International Conference on Very Large Data Bases (VLDB), pp. 407–419 (1995)Google Scholar
  9. 9.
    Borgelt, C.: Efficient implementations of apriori and eclat. In: Proceedings of the 1st Workshop of Frequent Item Set Mining Implementations, FIMI (2003)Google Scholar
  10. 10.
    Nurmi, P., Boström, F., Floréen, P., Kukkonen, J., Lagerspetz, E., Peltonen, P., Saarikko, P.: Massive - an adaptive shopping assistant. In: Adjunct Proceedings of the 10th International Conference on Ubiquitous Computing (2008)Google Scholar
  11. 11.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User Adapted Interaction 12(4), 331–370 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sparck Jones, K., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: development and comparative experiments Part 1. Information Processing and Management 36, 779–808 (2000)CrossRefGoogle Scholar
  13. 13.
    Järvelin, K., Kekälainen, J.: Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems 20(4), 422–446 (2002)CrossRefGoogle Scholar
  14. 14.
    Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: Using association rules for product assortment decisions: a case study. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), pp. 254–260. ACM, New York (1999)CrossRefGoogle Scholar
  15. 15.
    Anand, S.S., Patrick, A.R., Hughes, J.G., Bell, D.A.: A data mining methodology for cross-sales. Knowledge-Based Systems 10(7), 449–461 (1998)CrossRefGoogle Scholar
  16. 16.
    Vindevogel, B., der Poel, D.V., Wets, G.: Why promotion strategies based on market basket analysis do not work. Expert Systems with Applications 28, 583–590 (2005)CrossRefGoogle Scholar
  17. 17.
    Cumby, C., Fano, A., Ghani, R., Krema, M.: Predicting customer shopping lists from point-of-sale purchase data. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2004), pp. 402–409. ACM, New York (2004)CrossRefGoogle Scholar
  18. 18.
    Demiriz, A.: Enhancing product recommender systems on sparse binary data. Data Mining and Knowledge Discovery 9(2), 147–170 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Adomavicius, G., Tuzhilin, A.: Using data mining methods to build customer profiles. IEEE Computer 34(2), 74–82 (2001)CrossRefGoogle Scholar
  20. 20.
    Kurkovsky, S., Harihar, K.: Using ubiquitous computing in interactive mobile marketing. Personal and Ubiquitous Computing 10(4), 227–240 (2006)CrossRefGoogle Scholar
  21. 21.
    Lawrence, R.D., Almasi, G.S., Kotlyar, V., Viveros, M.S., Duri, S.S.: Personalization of supermarket product recommendations. Data Mining and Knowledge Discovery 5, 11–32 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kotlyar, V., Viveros, M.S., Duri, S., Lawrence, R.D., Almasi, G.S.: A case study in information delivery to mass retail markets. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 842–851. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Petteri Nurmi
    • 1
  • Andreas Forsblom
    • 1
  • Patrik Floréen
    • 1
  1. 1.Helsinki Institute for Information Technology HIITUniversity of HelsinkiFinland

Personalised recommendations