Improved Quantification of Bone Remodelling by Utilizing Fuzzy Based Segmentation

  • Joakim Lindblad
  • Nataša Sladoje
  • Vladimir Ćurić
  • Hamid Sarve
  • Carina B. Johansson
  • Gunilla Borgefors
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)

Abstract

We present a novel fuzzy theory based method for the segmentation of images required in histomorphometrical investigations of bone implant integration. The suggested method combines discriminant analysis classification controlled by an introduced uncertainty measure, and fuzzy connectedness segmentation method, so that the former is used for automatic seeding of the later. A thorough evaluation of the proposed segmentation method is performed. Comparison with previously published automatically obtained measurements, as well as with manually obtained ones, is presented. The proposed method improves the segmentation and, consequently, the accuracy of the automatic measurements, while keeping advantages with respect to the manual ones, by being fast, repeatable, and objective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative relative fuzzy connectedness for multiple objects with multiple seeds. Comput. Vis. Image Underst. 107(3), 160–182 (2007)CrossRefGoogle Scholar
  2. 2.
    Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 11, 37–46 (1960)CrossRefGoogle Scholar
  3. 3.
    Donath, K.: Die trenn-dunnschliffe-technik zur herstellung histologischer präparate von nicht schneidbaren geweben und materialien. Der Präparator 34, 197–206 (1988)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  5. 5.
    Hasanzadeh, M., Kasaei, S., Mohseni, H.: A new fuzzy connectedness relation for image segmentation. In: Proc. of Intern. Conf. on Information and Communication Technologies: From Theory to Applications, pp. 1–6. IEEE Society, Los Alamitos (2008)Google Scholar
  6. 6.
    Johansson, C.: On tissue reactions to metal implants. PhD thesis, Department of Biomaterials / Handicap Research, Göteborg University, Sweden (1991)Google Scholar
  7. 7.
    Johansson, C., Morberg, P.: Importance of ground section thickness for reliable histomorphometrical results. Biomaterials 16, 91–95 (1995)CrossRefGoogle Scholar
  8. 8.
    Koplowitz, J., Bruckstein, A.M.: Design of perimeter estimators for digized planar shapes. Trans. on PAMI 11, 611–622 (1989)CrossRefGoogle Scholar
  9. 9.
    Sarve, H., Lindblad, J., Johansson, C.B., Borgefors, G., Stenport, V.F.: Quantification of bone remodeling in the proximity of implants. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 253–260. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation. Graphical Models and Image Processing 58(3), 246–261 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Joakim Lindblad
    • 1
  • Nataša Sladoje
    • 2
  • Vladimir Ćurić
    • 2
  • Hamid Sarve
    • 1
  • Carina B. Johansson
    • 3
  • Gunilla Borgefors
    • 1
  1. 1.Centre for Image AnalysisSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Faculty of EngineeringUniversity of Novi SadSerbia
  3. 3.Department of Clinical MedicineÖrebro UniversityÖrebroSweden

Personalised recommendations