A Two-Phase Segmentation of Cell Nuclei Using Fast Level Set-Like Algorithms

  • Martin Maška
  • Ondřej Daněk
  • Carlos Ortiz-de-Solórzano
  • Arrate Muñoz-Barrutia
  • Michal Kozubek
  • Ignacio Fernández García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5575)

Abstract

An accurate localization of a cell nucleus boundary is inevitable for any further quantitative analysis of various subnuclear structures within the cell nucleus. In this paper, we present a novel approach to the cell nucleus segmentation in fluorescence microscope images exploiting the level set framework. The proposed method works in two phases. In the first phase, the image foreground is separated from the background using a fast level set-like algorithm by Nilsson and Heyden [1]. A binary mask of isolated cell nuclei as well as their clusters is obtained as a result of the first phase. A fast topology-preserving level set-like algorithm by Maška and Matula [2] is applied in the second phase to delineate individual cell nuclei within the clusters. The potential of the new method is demonstrated on images of DAPI-stained nuclei of a lung cancer cell line A549 and promyelocytic leukemia cell line HL60.

Keywords

Active Contour Lung Cancer Cell Line Binary Mask Initial Interface Geodesic Active Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nilsson, B., Heyden, A.: A fast algorithm for level set-like active contours. Pattern Recognition Letters 24(9-10), 1331–1337 (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Maška, M., Matula, P.: A fast level set-like algorithm with topology preserving constraint. In: CAIP 2009 (March 2009) (submitted)Google Scholar
  3. 3.
    Netten, H., Young, I.T., van Vliet, L.J., Tanke, H.J., Vrolijk, H., Sloos, W.C.R.: Fish and chips: Automation of fluorescent dot counting in interphase cell nuclei. Cytometry 28(1), 1–10 (1997)CrossRefGoogle Scholar
  4. 4.
    Gué, M., Messaoudi, C., Sun, J.S., Boudier, T.: Smart 3D-fish: Automation of distance analysis in nuclei of interphase cells by image processing. Cytometry 67(1), 18–26 (2005)CrossRefGoogle Scholar
  5. 5.
    Malpica, N., Ortiz de Solórzano, C., Vaquero, J.J., Santos, A., Vallcorba, I., García-Sagredo, J.M., del Pozo, F.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28(4), 289–297 (1997)CrossRefGoogle Scholar
  6. 6.
    Wählby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. Journal of Microscopy 215(1), 67–76 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ortiz de Solórzano, C., Malladi, R., Leliévre, S.A., Lockett, S.J.: Segmentation of nuclei and cells using membrane related protein markers. Journal of Microscopy 201(3), 404–415 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)CrossRefMATHGoogle Scholar
  9. 9.
    Chopp, D.: Computing minimal surfaces via level set curvature flow. Journal of Computational Physics 106(1), 77–91 (1993)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences 93(4), 1591–1595 (1996)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Shi, Y., Karl, W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Transactions on Image Processing 17(5), 645–656 (2008)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66(1), 1–31 (1993)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1987)CrossRefGoogle Scholar
  14. 14.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)CrossRefMATHGoogle Scholar
  15. 15.
    Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Transactions on Image Processing 10(10), 1467–1475 (2001)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kühne, G., Weickert, J., Beier, M., Effelsberg, W.: Fast implicit active contour models. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 133–140. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Whitaker, R.T.: A level-set approach to 3D reconstruction from range data. International Journal of Computer Vision 29(3), 203–231 (1998)CrossRefGoogle Scholar
  18. 18.
    Deng, J., Tsui, H.T.: A fast level set method for segmentation of low contrast noisy biomedical images. Pattern Recognition Letters 23(1-3), 161–169 (2002)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Maška
    • 1
  • Ondřej Daněk
    • 1
  • Carlos Ortiz-de-Solórzano
    • 2
  • Arrate Muñoz-Barrutia
    • 2
  • Michal Kozubek
    • 1
  • Ignacio Fernández García
    • 2
  1. 1.Centre for Biomedical Image Analysis, Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain

Personalised recommendations