Dengue Virus pp 35-44

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 338)

Subversion of Interferon by Dengue Virus

Chapter

Abstract

Dengue virus is sensed in mammalian cells by Toll-like receptors and DExD/H box RNA helicases, triggering a Type 1 interferon response. Interferon acts upon infected and noninfected cells by stimulating the JAK/STAT signaling pathway resulting in the activation of interferon stimulated genes that lead cells toward the establishment of an antiviral response. The recognition of the importance of this rapid protective response should come with the realization that dengue virus would circumvent the interferon response to propagate in the host. There is recent, mounting evidence for mechanisms encoded by the dengue virus that weaken interferon signaling. Nonstructural proteins expressed separately or in replicon vectors block phosphorylation and down-regulate expression of major components of the JAK/STAT pathway, causing reduced activation of gene expression in response to IFNα/β interferon. As our understanding of viral-host interaction increases, opportunities for improved biological models and therapeutics discovery arise.

References

  1. Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511CrossRefPubMedGoogle Scholar
  2. Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, Park GS, Boer E, Wolfinbarger JB, Bloom ME (2005) Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79:12828–12839CrossRefPubMedGoogle Scholar
  3. Bowie AG, Haga IR (2005) The role of Toll-like receptors in the host response to viruses. Mol Immunol 42:859–867CrossRefPubMedGoogle Scholar
  4. Chang TH, Liao CL, Lin YL (2006) Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect 8:157–171CrossRefPubMedGoogle Scholar
  5. Der SD, Zhou A, Williams BR, Silverman RH (1998) Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 95:15623–15628CrossRefPubMedGoogle Scholar
  6. Diamond MS, Harris E (2001) Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289:297–311CrossRefPubMedGoogle Scholar
  7. Diebold SS, Kaisho T, Hemmi H, Akira S, ReiseSousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531CrossRefPubMedGoogle Scholar
  8. Fink J, Gu F, Ling L, Tolfvenstam T, Olfat F, Chin KC, Aw P, George J, Kuznetsov VA, Schreiber M et al (2007) Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1:e86Google Scholar
  9. Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312:879–882CrossRefPubMedGoogle Scholar
  10. Guo JT, Hayashi J, Seeger C (2005) West Nile virus inhibits the signal transduction pathway of alpha interferon. J Virol 79:1343–1350CrossRefPubMedGoogle Scholar
  11. Haller O, Weber F (2007) Pathogenic viruses: smart manipulators of the interferon system. Curr Top Microbiol Immunol 316:315–334CrossRefPubMedGoogle Scholar
  12. Ho LJ, Hung LF, Weng CY, Wu WL, Chou P, Lin YL, Chang DM, Tai TY, Lai JH (2005) Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J Immunol 174:8163–8172PubMedGoogle Scholar
  13. Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3:281–294CrossRefPubMedGoogle Scholar
  14. Johnson AJ, Roehrig JT (1999) New mouse model for dengue virus vaccine testing. J Virol 73:783–786PubMedGoogle Scholar
  15. Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, Foster GR, Jacobs M (2005) Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79:5414–5420CrossRefPubMedGoogle Scholar
  16. Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, Diamond MS, Gale M Jr (2006) Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J Virol 80:9424–9434CrossRefPubMedGoogle Scholar
  17. Kurane I, Dai LC, Livingston PG, Reed E, Ennis FA (1993) Definition of an HLA-DPw2-restricted epitope on NS3, recognized by a dengue virus serotype-cross-reactive human CD4+ CD8- cytotoxic T-cell clone. J Virol 67:6285–6288PubMedGoogle Scholar
  18. Libraty DH, Pichyangkul S, Ajariyakhajorn C, Endy TP, Ennis FA (2001) Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J Virol 75:3501–3508CrossRefPubMedGoogle Scholar
  19. Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL (2002) High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 186:1165–1168CrossRefPubMedGoogle Scholar
  20. Lin C, Amberg SM, Chambers TJ, Rice CM (1993) Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B–3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. J Virol 67:2327–2335PubMedGoogle Scholar
  21. Lin RJ, Liao CL, Lin E, Lin YL (2004) Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. J Virol 78:9285–9294CrossRefPubMedGoogle Scholar
  22. Liu WJ, Wang XJ, Mokhonov VV, Shi PY, Randall R, Khromykh AA (2005) Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol 79:1934–1942CrossRefPubMedGoogle Scholar
  23. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M Jr (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345CrossRefPubMedGoogle Scholar
  24. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101:5598–5603CrossRefPubMedGoogle Scholar
  25. Lundin M, Monne M, Widell A, Von Heijne G, Persson MA (2003) Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol 77:5428–5438CrossRefPubMedGoogle Scholar
  26. Meylan E, Tschopp J (2006) Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 22:561–569CrossRefPubMedGoogle Scholar
  27. Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, Lipkin WI, Garcia-Sastre A (2005) Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79:8004–8013CrossRefPubMedGoogle Scholar
  28. Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100:14333–14338CrossRefPubMedGoogle Scholar
  29. Onomoto K, Yoneyama M, Fujita T (2007) Regulation of antiviral innate immune responses by RIG-I family of RNA helicases. Curr Top Microbiol Immunol 316:193–205CrossRefPubMedGoogle Scholar
  30. Park GS, Morris KL, Hallett RG, Bloom ME, Best SM (2007) Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain. J Virol 81:6936–6946CrossRefPubMedGoogle Scholar
  31. Pichyangkul S, Endy TP, Kalayanarooj S, Nisalak A, Yongvanitchit K, Green S, Rothman AL, Ennis FA, Libraty DH (2003) A blunted blood plasmacytoid dendritic cell response to an acute systemic viral infection is associated with increased disease severity. J Immunol 171:5571–5578PubMedGoogle Scholar
  32. Pitha PM, Kunzi MS (2007) Type I interferon: the ever unfolding story. Curr Top Microbiol Immunol 316:41–70CrossRefPubMedGoogle Scholar
  33. Qu L, McMullan LK, Rice CM (2001) Isolation and characterization of noncytopathic pestivirus mutants reveal a role for nonstructural protein NS4B in viral cytopathogenicity. J Virol 75:10651–10662CrossRefPubMedGoogle Scholar
  34. Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, Flavell R, Akira S, Ahmed R, Pulendran B (2006) Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8 and 9 to stimulate polyvalent immunity. J Exp Med 203:413–424CrossRefPubMedGoogle Scholar
  35. Sariol CA, Munoz-Jordan JL, Abel K, Rosado LC, Pantoja P, Giavedoni L, Rodriguez IV, White LJ, Martinez M, Arana T, Kraiselburd EN (2007) Transcriptional activation of interferon-stimulated genes but not of cytokine genes after primary infection of rhesus macaques with dengue virus type 1. Clin Vaccine Immunol 14:756–766CrossRefPubMedGoogle Scholar
  36. Severa M, Fitzgerald KA (2007) TLR-mediated activation of type I IFN during antiviral immune responses: fighting the battle to win the war. Curr Top Microbiol Immunol 316:167–192CrossRefPubMedGoogle Scholar
  37. Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E (2006) Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80:10208–10217CrossRefPubMedGoogle Scholar
  38. Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E (2005) Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 175:3946–3954PubMedGoogle Scholar
  39. Takaoka A, Yanai H (2006) Interferon signaling network in innate defense. Cell Microbiol 8:907–922CrossRefPubMedGoogle Scholar
  40. Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, Libraty DH (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177:7114–7121PubMedGoogle Scholar
  41. Warke RV, Martin KJ, Giaya K, Shaw SK, Rothman AL, Bosch I (2008) TRAIL is a novel antiviral protein against dengue virus. J Virol 82:555–564CrossRefPubMedGoogle Scholar
  42. Warke RV, Xhaja K, Martin KJ, Fournier MF, Shaw SK, Brizuela N, de Bosch N, Lapointe D, Ennis FA, Rothman AL, Bosch I (2003) Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. J Virol 77:11822–11832CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Division of Vector Borne Infectious Diseases, Dengue BranchCenters for Disease Control and PreventionSan JuanUSA

Personalised recommendations