Spatial risks and complex systems : methodological perspectives

  • Eric Daudé
  • Damienne Provitolo
  • Edwige Dubos-Paillard
  • David Gaillard
  • Emmanuel Eliot
  • Patrice Langlois
  • Eliane Propeck Zimmermamnn
  • Thierry Saint-Gérand
Part of the Understanding Complex Systems book series (UCS)

Summary

Research on risk and industrial catastrophes question the complexity theories. Besides the concepts of complexity which lead us to reconsider concepts of risk, hazard and vulnerability, we propose to think about more practical aspects, for example the modelling of human behaviour in crisis situations. The link between concepts as critical self-organization, emergence, bifurcation, and the methods in the Distributed Artificial Intelligence (DAI) used to model them is however difficult.

In this paper, we present ongoing analysis on the key concepts of risk science, such as hazards and catastrophes. We propose to enrich them with complex systems theories. First, we present methodological perspectives of the DAI, for example multi-agent systems, and compare them with other simulation methods used in the context of risks. Secondly, we present the MOSAIIC model (Modelling and Simulation of Industrial Accidents by Individual-Based methods) which gives possibilities to simulate the behaviour of individuals during an industrial accident. The project and the MOSAIIC model aim to explore the effects of a major industrial accident on public health. For instance, the emission and the spread of a toxic gas in an urban environment may be a serious danger for the human health. Thus we propose to study the consequences of this type of event in order to reduce the vulnerability of the populations. In the model, we emphasize both on spatial and behavioral dimensions (ie. mobility and perception of risk).

All these questions lead us to use different methodologies of analysis. For example, concerning mobility, the daily traffic can be simulated at a meso scale: a road axis for example. In that way, we aim to simulate the global dynamics of the network from the modelling of flows on arcs of the network (modulated according to the time of day and the day of week). Yet, we plan to use classical models (for instance equilibrium models) because they give an ”average image” of the flows of vehicles on the arcs. Based on this first structural mobility, it is then possible to consider ”a change of level” regarding both the representation and the analysis: if a risk occurs or if a specific context disrupts the structure. As a consequence, from a management of flows on the arc, we turn to an analysis of the individual behaviours in a multi-agent system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bak, P.: How Nature Works. Springer, New York (1996)MATHGoogle Scholar
  2. 2.
    Dauphiné, A.: Risques et catastrophes: observer, spatialiser, comprendre, gérer. Armand Colin, Paris (2003)Google Scholar
  3. 3.
    Provitolo, D.: Modélisation et simulation de catastrophe urbaine: le couplage de l’aléa et de la vulnérabilité, Actes du colloque SIRNAT, La Prévention des Risques Naturels, Orléans (2003), http://www.brgm.fr/divers/sirnatActesColl.htm
  4. 4.
    Mathieu, J.P.: Dictionnaire de physique. Masson, Paris (1991)Google Scholar
  5. 5.
    Holling, C.S.: Resilience ans stability of ecological systems. Annual Review of Ecology and Systematics 4, 1–23 (1973)CrossRefGoogle Scholar
  6. 6.
    Dovers, S., Handmer, J.: Uncertainty, sustainability and change. Global Environmental Change 2(4), 262–276 (1992)CrossRefGoogle Scholar
  7. 7.
    Berkes, F., Folke, C.: Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building resilience. Cambridge University Press, New York (1998)Google Scholar
  8. 8.
    De Bruijn, K.M.: Resilience and flood risk management, a system approach applied to lowland rivers. Thése, Université de Delft (2005)Google Scholar
  9. 9.
    Vis, M., Klijn, F., Van Buuren, M.: Living with floods. Resilience strategies for flood risk management and multiple land use in the lower Rhine River basin. NCR-publication 10-2001. NCR, Delft, The Netherlands (2001)Google Scholar
  10. 10.
    Dauphiné, A., Provitolo, D.: La résilience: un concept pour la gestion des risques. Annales de géographie 654, 115–125 (2007)CrossRefGoogle Scholar
  11. 11.
    Dupuis, J.P.: La panique. Les empêcheurs de tourner en rond, Paris (1991)Google Scholar
  12. 12.
    Provitolo, D.: A proposition for a classification of the catastrophe systems based on complexity criteria. In: 4th European Conference on Complex Systems (ECCS 2007), - EPNACS 2007 - Emergent Properties in Natural and Artificial Complex Systems, Dresden, Germany (2007), http://www-lih.univ-lehavre.fr/bertelle/epnacs2007-proceedings/provitolo4epnacs07.pdf
  13. 13.
    Langlois, P., Daudé, E.: Concepts et modélisations de la diffusion géographique. Cybergeo: Revue européenne de géographie 364 (2007), http://www.cybergeo.eu/index2898.html
  14. 14.
    Daudé, E.: Apports de la simulation multi-agents á l’étude des processus de diffusion. Cybergeo: Revue européenne de géographie 255 (2004), http://www.cybergeo.eu/index3835.html
  15. 15.
    Eubank, S., Guclu, H., Anil Kumar, V., Marathe, M., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)CrossRefGoogle Scholar
  16. 16.
    Provitolo, D.: Un exemple d’effets de domino: la panique dans les catastrophes urbaines. Cybergeo: Revue européenne de géographie 328 (2005), http://www.cybergeo.eu/index2991.html
  17. 17.
    Pumain, D., Saint-Julien, T.: L’analyse spatiale: Localisation dans l’espace. Arman Colin, CURSUS Géographie, Paris (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eric Daudé
    • 1
  • Damienne Provitolo
    • 2
  • Edwige Dubos-Paillard
    • 2
  • David Gaillard
    • 3
  • Emmanuel Eliot
    • 4
  • Patrice Langlois
    • 1
  • Eliane Propeck Zimmermamnn
    • 3
  • Thierry Saint-Gérand
    • 3
  1. 1.MTG Lab.UMR-IDEES 6228RouenFrance
  2. 2.ThéMA, U.M.R. 6049 C.N.R.S. Université de Franche-ComtéFrance
  3. 3.GéoSysCom Lab.UMR-IDEES 6228CaenFrance
  4. 4.CIRTAI Lab.UMR-IDEES 6228Le HavreFrance

Personalised recommendations