Models and Simulations in the Historical Emergence of the Science of Complexity

  • Franck Varenne
Part of the Understanding Complex Systems book series (UCS)

Summary

As brightly shown by Mainzer [24], the science of complexity has many distinct origins in many disciplines. Those various origins has led to “an interdisciplinary methodology to explain the emergence of certain macroscopic phenomena via the nonlinear interactions of microscopic elements” (ibid.). This paper suggests that the parallel and strong expansion of modeling and simulation - especially after the Second World War and the subsequent development of computers - is a rationale which also can be counted as an explanation of this emergence. With the benefit of hindsight, one can find three periods in the methodologies of modeling in the empirical sciences: 1st the simple modeling of the simple, 2nd the simple modeling of the complex, 3rd the complex modeling and simulation of the complex. Our main thesis is that the current spreading (since the 90’s) of complex computer simulations of systems of models (where a simulation is no more a step by step calculus of a unique logico-mathematical model) is another promising dimension of the science of complexity. Following this claim, we propose to distinguish three different types of computer simulations in the context of complex systems’ modeling. Finally, we show that these types of simulations lead to three different types of weak emergence, too.

Keywords

complexity model computer simulation numerical simulation algorithmic simulation software-based simulation weak emergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedau, M.A.: Weak Emergence. In: Tomberlin, J. (ed.) Philosophical Perspectives: Mind, Causation and World, vol. 11, pp. 375–399. Blackwell, Malden (1997)Google Scholar
  2. 2.
    Bedau, M.A.: Downward Causation and the Autonomy of Weak Emergence. Special issue on Emergence and Downward Causation, Principia 6, 5–50 (2002)Google Scholar
  3. 3.
    Bergé, P., Pomeau, Y., Vidal, C.: Order within Chaos. Hermann & John Wiley & sons, Inc., Paris (1987)Google Scholar
  4. 4.
    Berkeley, I.: What the.. is a subsymbol? Minds and Machines 10(1), 1–14 (2000)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Berkeley, I.: What the.. is a symbol? Minds and Machines 18, 93–105 (2008)CrossRefGoogle Scholar
  6. 6.
    Bhala, U.: Understanding complex signaling networks through models and metaphors. Progress in Biophysics and Molecular Biology 81(1), 45–65 (2003)CrossRefGoogle Scholar
  7. 7.
    Braillard, P.A.: Que peut expliquer un modèle complexe et peut-on le comprendre? In: Kupiec, J.J., Lecointre, G., Silberstein, M., Varenne, F. (eds.) Modèles, Simulations, Systèmes, Syllepse, Paris, pp. 89–108 (2008)Google Scholar
  8. 8.
    Crombie, A.: Augustine to Galileo: The History of Science A.D. 400 - 1650, 1st edn. Penguin, London (1959) (revised edition 1969) Google Scholar
  9. 9.
    Deléage, J.-P.: Une histoire de l’écologie, La Découverte, Paris (1991)Google Scholar
  10. 10.
    Dessalles, J.L., Müller, J.P., Phan, D.: Emergence in Multi-agent Systems - Conceptual and Methodological Issues. In: Phan, D., Amblard, F. (eds.) Agent-Based Modeling and Simulation in the Social and Human Sciences, pp. 327–355. The Bardwell Press, Oxford (2007)Google Scholar
  11. 11.
    Duboz, R.: Intégration de modèles hétérogènes pour la modélisation et la simulation de systèmes complexes - Application à la modélisation multi-échelles en écologie marine, Thèse d’informatique, Université du Littoral (2004)Google Scholar
  12. 12.
    Duhem, P.: To Save the Phenomena: An Essay of the Idea of Physical Theory from Plato to Galileo, translated from Sauver les phénomènes - Essai sur la notion de théorie physique, University of Chicago Press, Paris, 1908 (1969)Google Scholar
  13. 13.
    Edwards, M.: Intérêt d’un modèle agrégé pour étudier le comportement et simplifier la simulation d’un modèle individu-centré de consommation couplé à un modèle de ressource en eau, Thèse d’informatique, Université Paris 6 - Pierre et Marie Curie (2004)Google Scholar
  14. 14.
    Goodman, N.: Routes of Reference. Critical Inquiry 8(1), 121–132 (1981)CrossRefGoogle Scholar
  15. 15.
    Grimm, V.: Ten years of individual-based modelling in ecology: what we have learned and what could we learn in the future? Ecological Modelling 115, 129–148 (1999)CrossRefGoogle Scholar
  16. 16.
    Haken, H.: Synergetics. Springer, Berlin (1977)Google Scholar
  17. 17.
    Hartmann, S.: The world as a process. In: Hegselmann, Müller, Troitzsch (eds.) Modelling and simulation in the social sciences from the philosophy of science point of view, pp. 77–100. Kluwer, Dordrecht (1996)Google Scholar
  18. 18.
    Huet, S., Edwards, M., Deffuant, G.: Taking into Account the Variations of Neighbourhood Sizes in the Mean-Field Approximation of the Threshold Model on a Random Network. Journal of Artificial Societies and Social Simulation 10(1) 10 (2007)Google Scholar
  19. 19.
    Huet, S., Deffuant, G.: Differential Equation Models Derived from an Individual-Based Model Can Help to Understand Emergent Effects. Journal of Artificial Societies and Social Simulation 11(2) 10 (2008)MathSciNetGoogle Scholar
  20. 20.
    Humphreys, P.: Extending Ourselves - Computational Science, Empiricism, and Scientific Method. Oxford University Press, Oxford (2004)Google Scholar
  21. 21.
    Jensen, H.J.: Self-Organized Criticality - Emergent Complex Behavior in Physical and Biological Systems. Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  22. 22.
    Kauffman, S.: At Home in the Universe - The Search for the Laws of Self-Organization and Complexity. Oxford University Press, Oxford (1995)Google Scholar
  23. 23.
    Laskar, J.: A numerical experiment on the chaotic behavior of the solar system. Nature 338(6212), 237–238 (1989)CrossRefGoogle Scholar
  24. 24.
    Mainzer, K.: Thinking in Complexity - The Complex Dynamics of Matter. Mind and Mankind. Springer, Berlin (1994); 3rd revised and enlarged edition: (1997) Google Scholar
  25. 25.
    Minsky, M.: Matter, Mind and Models. In: Proceedings of the International Federation of Information Processing Congress, vol. 1, pp. 45–49 (1965)Google Scholar
  26. 26.
    Mitchell, S.D.: Biological Complexity and Integrative Pluralism. Cambridge University Press, Cambridge (2003)Google Scholar
  27. 27.
    Nicolis, G., Prigogine, I.: Exploring Complexity. W.H.Freeman & Co Ltd, New York (1989)Google Scholar
  28. 28.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990)MATHGoogle Scholar
  29. 29.
    Russell, B.: On Denoting. Mind, new series 14, 479–493 (1905)Google Scholar
  30. 30.
    Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)Google Scholar
  31. 31.
    Smolensky, P.: On the proper treatment of connectionism. The Behavioural and Brain Sciences 11, 1–74 (1988)CrossRefGoogle Scholar
  32. 32.
    Stöckler, M.: On Modeling and Simulations as Instruments for the Study of Complex Systems. In: Science at Century’s End. Proc. of the Pittsburgh/Konstanz Colloquium in the Philosophy of Science, October 1997, pp. 355–373. Univ. of Pittsburgh Press (2000)Google Scholar
  33. 33.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modelling. MIT Press Series in Scientific Computation (1987)Google Scholar
  34. 34.
    Ulam, S.: On some mathematical problems connected with patterns of growth of figures. In: Proceedings of Symposia in Applied Mathematics, vol. 14, pp. 215–224. American Mathematical Society (1962)Google Scholar
  35. 35.
    Varenne, F.: Du modèle à la simulation informatique, Vrin, Paris (2007)Google Scholar
  36. 36.
    Winsberg, E.: A Tale of Two Methods. Synthese (forthcoming) (2008)Google Scholar
  37. 37.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)Google Scholar
  38. 38.
    Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation - Integrating discrete event and continuous complex dynamic systems. Academic Press, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Franck Varenne
    • 1
    • 2
  1. 1.Department of PhilosophyUniversity of RouenMont-Saint-AignanFrance
  2. 2.GEMAS, CNRS UMR 8598Paris SorbonneFrance

Personalised recommendations