Genetic Algorithm inAb Initio Protein Structure Prediction Using Low Resolution Model: A Review

  • Md. Tamjidul Hoque
  • Madhu Chetty
  • Abdul Sattar
Part of the Studies in Computational Intelligence book series (SCI, volume 224)


Proteins are sequences of amino acids bound into a linear chain that adopt a specific folded three-dimensional (3D) shape. This specific folded shape enables proteins to perform specific tasks. The protein structure prediction (PSP) by ab initio or de novo approach is promising amongst various available computational methods and can help to unravel the important relationship between sequence and its corresponding structure. This article presents the ab initio protein structure prediction as a conformational search problem in low resolution model using genetic algorithm. As a review, the essence of twin removal, intelligence in coding, the development and application of domain specific heuristics garnered from the properties of the resulting model and the protein core formation concept discussed are all highly relevant in attempting to secure the best solution.


Genetic Algorithm Monte Carlo Protein Structure Prediction Topological Neighbour Relative Encode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Unger, R., Moult, J.: On the Applicability of Genetic Algorithms to Protein Folding. In: The Twenty-Sixth Hawaii International Conference on System Sciences, pp. 715–725 (1993)Google Scholar
  2. 2.
    Unger, R., Moult, J.: Genetic Algorithms for Protein Folding Simulations. Journal of Molecular Biology 231, 75–81 (1993)CrossRefGoogle Scholar
  3. 3.
    Hoque, M.T., Chetty, M., Dooley, L.S.: A New Guided Genetic Algorithm for 2D Hydrophobic-Hydrophilic Model to Predict Protein Folding. In: IEEE Congress on Evolutionary Computation (CEC), Edinburgh, UK (2005)Google Scholar
  4. 4.
    Bonneau, R., Baker, D.: Ab Initio Protein Structure Prediction: Progress and Prospects. Annu. Rev. Biophys. Biomol. Struct. 30, 173–189 (2001)CrossRefGoogle Scholar
  5. 5.
    Chivian, D., Robertson, T., Bonneau, R., Baker, D.: Ab Initio Methods. In: Bourne, P.E., Weissig, H. (eds.) Structural Bioinformatics. Wiley-Liss, Inc, Chichester (2003)Google Scholar
  6. 6.
    Samudrala, R., Xia, Y., Levitt, M.: A Combined Approach for ab initio Construction of Low Resolution Protein Tertiary Structures from Sequence Pacific Symposium on Biocomputing (PSB), vol. 4, pp. 505–516 (1999)Google Scholar
  7. 7.
    Corne, D.W., Fogel, G.B.: An Introduction to Bioinformatics for Computer Scientists. In: Fogel, G.B., Corne, D.W. (eds.) Evolutionary Computation in Bioinformatics, pp. 3–18 (2004)Google Scholar
  8. 8.
    Berg, J.M., Tymoczko, J.L., Stryer, L., Clarke, N.D. (eds.): Biochemistry. W. H. Freeman and Company, New York (2002)Google Scholar
  9. 9.
    Takahashi, O., Kita, H., Kobayashi, S.: Protein Folding by A Hierarchical Genetic Algorithm. In: 4th Int. Symp. AROB (1999)Google Scholar
  10. 10.
    Kuwajima, K., Arai, M. (eds.): Old and New Views of Protein Folding. Elesevier, Amsterdam (1999)Google Scholar
  11. 11.
    Pietzsch, J.: Protein folding technology (July 2007),
  12. 12.
    Hoque, M.T., Chetty, M., Dooley, L.S.: Significance of Hybrid Evolutionary Computation for Ab Inito Protein Folding Prediction. In: Grosan, C., Abraham, A., Ishibuchi, H. (eds.) Hybrid Evolutionary Algorithms, Springer, Berlin (2006)Google Scholar
  13. 13.
    Lamont, G.B., Merkie, L.D.: Toward effective polypeptide chain prediction with parallel fast messy genetic algorithms. In: Fogel, G., Corne, D. (eds.) Evolutionary Computation in Bioinformatics, pp. 137–161 (2004)Google Scholar
  14. 14.
    Guex, N., Peitsch, M.C.: Principles of Protein Structure: Comparative Protein Modelling and Visualisation (April 2007),
  15. 15.
    Jones, D.T., Miller, R.T., Thornton, J.M.: Successful protein fold recognition by optimal sequence threading validated by rigorous blind testing. Proteins: Structure, Function, and Genetics 23, 387–397 (1995)CrossRefGoogle Scholar
  16. 16.
    Sánchez, R., Šali, A.: Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. In: PNAS 95, pp. 13597–13602 (1998)Google Scholar
  17. 17.
    Jones, D.T.: GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences. Journal of Molecular Biology 287, 797–815 (1999)CrossRefGoogle Scholar
  18. 18.
    Wikipedia: De novo protein structure prediction (July 2007),
  19. 19.
    Xia, Y., Huang, E.S., Levitt, M., Samudrala, R.: Ab Initio Construction of Protein Tertiary Structures using a Hierarchical Approach. J. Mol. Biol. 300, 171–185 (2000)CrossRefGoogle Scholar
  20. 20.
    Anfinsen, C.B.: Studies on the Principles that Govern the Folding of Protein Chains (1972),
  21. 21.
    Levinthal, C.: Are there pathways for protein folding? Journal of Chemical Physics 64, 44–45 (1968)Google Scholar
  22. 22.
    Backofen, R., Will, S.: A Constraint-Based Approach to Fast and Exact Structure Prediction in Three-Dimensional Protein Models. Constraints Journal 11 (2006)Google Scholar
  23. 23.
    Schueler-Furman, O., Wang, C., Bradley, P., Misura, K., Baker, D.: Progress in Modeling of Protein Structures and Interactions. Science 310, 638–642 (2005)CrossRefGoogle Scholar
  24. 24.
    Hirst, J.D., Vieth, M., Skolnick, J., Brook, C.L.: Predicting leucine zipper structures from sequence. Protein Engineering 9, 657–662 (1996)CrossRefGoogle Scholar
  25. 25.
    Roterman, I.K., Lambert, M.H., Gibson, K.D., Scheraga, H.: A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N’-methyl amide: comparisons, contrasts and simple experimental tests. J. Biomol. Struct. Dynamics 7, 421–453 (1989)Google Scholar
  26. 26.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins and nucleic acids. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  27. 27.
    Nemethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H.A.: Improved geometrical parameters and non-bonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. Journal of physical chemistry 96, 6472–6484 (1992)CrossRefGoogle Scholar
  28. 28.
    Heureux, P.L., et al.: Knowledge-Based Prediction of Protein Tertiary Structure. Computational Methods for Protein Folding: Advances in Chemical Physics 120 (2002)Google Scholar
  29. 29.
    Ercolessi, F.: A molecular dynamics primer. In: ICTP, Spring College in Computational Physics (1997)Google Scholar
  30. 30.
    Schlick, T.: Molecular Modeling and Simulation. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  31. 31.
    Stote, R.: Theory of Molecular Dynamics Simulations (March 2006),
  32. 32.
    Dill, K.A.: Theory for the Folding and Stability of Globular Proteins. Biochemistry 24, 1501–1509 (1985)CrossRefGoogle Scholar
  33. 33.
    Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D., Chan, H.S.: Principles of protein folding – A perspective from simple exact models. Protein Science 4, 561–602 (1995)Google Scholar
  34. 34.
    Backofen, R., Will, S., Clote, P.: Algorithmic approach to quantifying the hydrophobic force contribution in protein folding. Pacific Symp. On Biocomputing 5, 92–103 (2000)Google Scholar
  35. 35.
    Schöppe, G., Heermann, D.W.: Alternative off-lattice model with continuous backbone mass for polymers. Physical Review E59, 636–641 (1999)Google Scholar
  36. 36.
    Chen, M., Huang, W.: Heuristic Algorithm for off-lattice protein folding problem. Journal of Zhejiang Univ Science B 7, 7–12 (2006)CrossRefGoogle Scholar
  37. 37.
    Skolnick, J., Kolinski, A.: A Unified Approach to the prediction of Protein Structure and Function. Computational Methods for Protein Folding: Advances in Chemical Physics 120 (2002)Google Scholar
  38. 38.
    Kolinski, A., Gront, D., Kmiecik, S., Kurcinski, M., Latek, D.: Modeling Protein Structure, Dynamics and Thermodynamics with Reduced Representation of Conformational Space. John von Neumann Institute for Computing (NIC) Series 34, 21–28 (2006)Google Scholar
  39. 39.
    Duan, Y., Kollman, P.A.: Computational protein folding: From lattice to all-atom. IBM Systems Journal 40 (2001)Google Scholar
  40. 40.
    Allen, F., et al.: Blue Gene: A vision for protein science using a petaflop supercomputer. IBM System Journal 40 (2001)Google Scholar
  41. 41.
    Germain, R.S., Fitch, B., Rayshubskiy, A., Eleftheriou, M., Pitman, M.C., Suits, F., Giampapa, M., Ward, T.J.C.: Blue Matter on Blue Gene/L: Massively Parallel Computation for Bio-molecular Simulation. ACM, New York (2005)Google Scholar
  42. 42.
    Shmygelska, A., Hoos, H.H.: An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics 6 (2005)Google Scholar
  43. 43.
    Chivian, D., Kim, D.E., Malmström, L., Schonburn, J., Rohl, C.A., Baker, D.: Prediction of CASP6 Structures Using Automated Robetta Protocols. PROTEINS: Structure, Function, and Genetics 7, 157–166 (2005)Google Scholar
  44. 44.
    Hung, L.-H., Samudrala, R.: PROTINFO: secondary and tertiary protein structure prediction. Nucleic Acids Research 31, 3296–3299 (2003)CrossRefGoogle Scholar
  45. 45.
    Hung, L.H., Ngan, S.C., Liu, T., Samudrala, R.: PROTINFO: new algorithms for enhanced protein structure predictions. Nucleic Acids Research 33, 77–80 (2005)CrossRefGoogle Scholar
  46. 46.
    Zhang, Y., Arakaki, A.K., Skolnick, J.: TASSER: An Automated Method for the Prediction of Protein Tertiary Structures in CASP6. PROTEINS: Structure, Function, and Bioinformatics 7, 91–98 (2005)CrossRefGoogle Scholar
  47. 47.
    Baker, D.: A surprising simplicity to protein folding. Nature 405, 39–42 (2000)CrossRefGoogle Scholar
  48. 48.
    Baker, D.: Prediction and design of macromolecular structures and interactions. Phil. Trans. R. Soc. B 361, 459–463 (2006)CrossRefGoogle Scholar
  49. 49.
    Zhang, Y.: Protein Structure Prediction by I-TASSER at CASP7 (2006)Google Scholar
  50. 50.
    Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding (extended abstract). In: The second annual international conference on Computational molecular biology, pp. 597–603. ACM, New York (1998)Google Scholar
  51. 51.
    Berger, B., Leighton, T.: Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-Complete. Journal of Computational Biology 5, 27–40 (1998)CrossRefGoogle Scholar
  52. 52.
    Chen, M., Lin, K.Y.: Universal amplitude ratios for three-dimensional self-avoiding walks. Journal of Physics A: Mathematical and General 35, 1501–1508 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Schiemann, R., Bachmann, M., Janke, W.: Exact Enumeration of Three – Dimensional Lattice Proteins. In: Computer Physics Communications, p. 166. Elsevier Science, Amsterdam (2005)Google Scholar
  54. 54.
    MacDonald, D., Joseph, S., Hunter, D.L., Moseley, L.L., Jan, N., Guttmann, A.J.: Self-avoiding walks on the simple cubic lattice. Journal of Physics A: Mathematical and General 33, 5973–5983 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Guttmann, A.J.: Self-avoiding walks in constrained and random geometries. Elsevier, Amsterdam (2005)Google Scholar
  56. 56.
    Bastolla, U., Frauenkron, H., Gerstner, E., Grassberger, P., Nadler, W.: Testing a new Monte Carlo Algorithm for Protein Folding. National Center for Biotechnology Information 32, 52–66 (1998)Google Scholar
  57. 57.
    Liang, F., Wong, W.H.: Evolutionary Monte Carlo for protein folding simulations. J. Chem. Phys. 115 (2001)Google Scholar
  58. 58.
    Jiang, T., Cui, Q., Shi, G., Ma, S.: Protein folding simulation of the hydrophobic-hydrophilic model by computing tabu search with genetic algorithms. In: ISMB, Brisbane, Australia (2003)Google Scholar
  59. 59.
    Unger, R., Moult, J.: Genetic Algorithm for 3D Protein Folding Simulations. In: 5th International Conference on Genetic Algorithms, pp. 581–588 (1993)Google Scholar
  60. 60.
    König, R., Dandekar, T.: Refined Genetic Algorithm Simulation to Model Proteins. Journal of Molecular Modeling 5 (1999)Google Scholar
  61. 61.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution (1992)Google Scholar
  62. 62.
    Holland, J.H.: Adaptation in Natural And Artificial Systems. MIT Press, Cambridge (2001)Google Scholar
  63. 63.
    Schulze-Kremer, S.: Genetic Algorithms and Protein Folding (1996)Google Scholar
  64. 64.
    Whitley, D.: An Overview of Evolutionary Algorithms. Journal of Information and Software Technology 43, 817–831 (2001)CrossRefGoogle Scholar
  65. 65.
    Goldberg, D.E.: Genetic Algorithm Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)Google Scholar
  66. 66.
    Vose, M.D.: The Simple Genetic Algorithm. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  67. 67.
    Fogel, D.B.: Evolutionary Computation Towards a new philosophy of Machine Intelligence. IEEE Press, Los Alamitos (2000)Google Scholar
  68. 68.
    Davis, L.: Handbook of Genetic Algorithm. VNR, New York (1991)Google Scholar
  69. 69.
    Yao, X.: Evolutionary Computation Theory and Application. World Scientific, Singapore (1999)Google Scholar
  70. 70.
    Wikipedia: Genetic Algorithm (July 2007),
  71. 71.
    Hoque, M.T., Chetty, M., Dooley, L.S.: Generalized Schemata Theorem Incorporating Twin Removal for Protein Structure Prediction. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 84–97. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  72. 72.
    Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms (2004)Google Scholar
  73. 73.
    Ronald, S.: Duplicate Genotypes in a Genetic algorithm. In: IEEE World Congress on Computational Intelligence, pp. 793–798 (1998)Google Scholar
  74. 74.
    Hart, W.E., Istrail, S.: HP Benchmarks (August 2005),
  75. 75.
    Lesh, N., Mitzenmacher, M., Whitesides, S.: A Complete and Effective Move Set for Simplified Protein Folding. In: RECOMB, Berlin, Germany (2003)Google Scholar
  76. 76.
    Hoque, M.T., Chetty, M., Dooley, L.S.: Non-Isomorphic Coding in Lattice Model and its Impact for Protein Folding Prediction Using Genetic Algorithm. In: IEEE Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, Toronto (2006)Google Scholar
  77. 77.
    Patton, A.L., Punch, W.F., Goodman, E.D.: A Standard GA approach to Native Protein Conformation Prediction. In: 6th International Conference on Genetic Algorithms, pp. 574–581 (1995)Google Scholar
  78. 78.
    Krasnogor, N., Hart, W.E., Smith, J., Pelta, D.A.: Protein Structure Prediction With Evolutionary Algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 1999 (1999)Google Scholar
  79. 79.
    Bornberg-Bauer, E.: Chain Growth Algorithms for HP-Type Lattice Proteins. In: RECOMB, Santa Fe, NM, USA (1997)Google Scholar
  80. 80.
    Hoque, M.T., Chetty, M., Dooley, L.: A Guided Genetic Algorithm for Protein Folding Prediction Using 3D Hydrophobic-Hydrophilic Model. In: Special session in WCCI / IEEE Congress on Evolutionary Computation, CEC (2006)Google Scholar
  81. 81.
    Hoque, M.T., Chetty, M., Dooley, L.S.: A Hybrid Genetic Algorithm for 2D FCC Hydrophobic-Hydrophilic Lattice Model to Predict Protein Folding. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS(LNAI), vol. 4304, pp. 867–876. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  82. 82.
    Hoque, M.T., Chetty, M., Sattar, A.: Protein Folding Prediction in 3D FCC HP Lattice Model Using Genetic Algorithm Bioinformatics special session. In: IEEE Congress on Evolutionary Computation (CEC), Singapore (2007)Google Scholar
  83. 83.
    Yue, K., Dill, K.A.: Sequence-structure relationships in proteins and copolymers. Phys. Rev. E 48, 2267–2278 (1993)Google Scholar
  84. 84.
    Bonneau, R., Strauss, C., Baker, D.: Improving the Performance of Rosetta Using Multiple Sequence Alignment Information and Global Measures of Hydrophobic Core. PROTEINS: Structure, Function, and Genetics 43, 1–11 (2001)CrossRefGoogle Scholar
  85. 85.
    Toma, L., Toma, S.: Contact interactions methods: A new Algorithm for Protein Folding Simulations. Protein Science 5, 147–153 (1996)CrossRefGoogle Scholar
  86. 86.
    Backofen, R., Will, S.: A Constraint-Based Approach to Fast and Exact Structure Prediction in Three-Dimensional Protein Models. Kluwer Academic Publishers, Dordrecht (2005)Google Scholar
  87. 87.
    Raghunathan, G., Jernigan, R.L.: Ideal architecture of residue packing and its observation in protein structures. Protein Sci. 10, 2072–2083 (1997)CrossRefGoogle Scholar
  88. 88.
    Wikipedia: Cuboctahedron (February 2007),
  89. 89.
    Backofen, R., Will, S., Bornberg-Bauer, E.: Application of constraint programming techniques for structure prediction of lattice proteins with extended alphabets. Bioinformatics 15, 234–242 (1999)CrossRefGoogle Scholar
  90. 90.
    Guo, Y.Z., Feng, E.M., Wang, Y.: Exploration of two-dimensional hydrophobic-polar lattice model by combining local search with elastic net algorithm. J. Chem. Phys. 125 (2006)Google Scholar
  91. 91.
    Crippen, G.M.: Prediction of Protein Folding from Amino Acid Sequence over Discrete Conformation Spaces. Biochemistry 30, 4232–4237 (1991)CrossRefGoogle Scholar
  92. 92.
    Hoque, M.T., Chetty, M., Sattar, A.: Extended HP model for Protein Structure Prediction. Journal of Computational Biology 16, 1–19 (2007)MathSciNetGoogle Scholar
  93. 93.
    Jordan, J.K., Kondrashov, F.A., Adzhubei, I.A., Wolf, Y.I., Koonin, E.V., Kondrashov, A.S., Sunyaev, S.: A universal trend of amino acid gain and loss in protein evolution. Letter to Nature 433 (2005)Google Scholar
  94. 94.
    PDB, Protein Data Base (April 2007),

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Md. Tamjidul Hoque
    • 1
  • Madhu Chetty
    • 2
  • Abdul Sattar
    • 1
  1. 1.IIISGriffith UniversityNathanAustralia
  2. 2.GSITMonash UniversityChurchillAustralia

Personalised recommendations