Converting between Various Sequence Representations

  • Gilbert Ritschard
  • Alexis Gabadinho
  • Matthias Studer
  • Nicolas S. Müller
Part of the Studies in Computational Intelligence book series (SCI, volume 223)


This chapter is concerned with the organization of categorical sequence data. We first build a typology of sequences distinguishing for example between chronological sequences and sequences without time content. This permits to identify the kind of information that the data organization should preserve. Focusing then mainly on chronological sequences, we discuss the advantages and limits of different ways of representing time stamped event and state sequence data and present solutions for automatically converting between various formats, e.g., between horizontal and vertical presentations but also from state sequences into event sequences and reciprocally. Special attention is also drawn to the handling of missing values in these conversion processes.


Sequence data organization State sequence Event sequence Transition Converting between sequence formats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aassve, A., Billari, F., Piccarreta, R.: Strings of adulthood: A sequence analysis of young British women’s work-family trajectories. European Journal of Population 23(3), 369–388 (2007)CrossRefGoogle Scholar
  2. 2.
    Blossfeld, H.P., Golsch, K., Rohwer, G.: Event History Analysis with Stata. Lawrence Erlbaum, Mahwah (2007)Google Scholar
  3. 3.
    Brock, G.N., Shaffer, J.R., Blakesley, R.E., Lotz, M.J., Tseng, G.C.: Which missing value imputation method to use in expression profiles: A comparative study and two selection schemes. BMC Bioinformatics 9, 12 (2008)CrossRefGoogle Scholar
  4. 4.
    Gabadinho, A., Ritschard, G., Studer, M., Müller, N.S.: Mining sequence data in R with TraMineR: A user’s guide for version 1.1. Technical report, Department of Econometrics and Laboratory of Demography, University of Geneva, Geneva (2009),
  5. 5.
    Gauthier, J.A., Widmer, E.D., Bucher, P., Notredame, C.: Multichannel sequence analysis applied to social science data, University of Lausanne (2007) (manuscript) (under review)Google Scholar
  6. 6.
    Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Transactions on Asian Language Information Processing 3(1), 66–85 (2004)CrossRefGoogle Scholar
  7. 7.
    Karweit, N., Kertzer, D.: Data organization and conceptualization. In: Giele, J.Z., Elder, G.H. (eds.) Methods of Life Course Research: Qualitative and Quantitative Approaches, pp. 81–97. Sage, Thousand Oaks (1998)Google Scholar
  8. 8.
    Little, R.J.A.: Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90(431), 1112–1121 (1995), zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ritschard, G., Oris, M.: Life course data in demography and social sciences: Statistical and data mining approaches. In: Levy, R., Ghisletta, P., Le Goff, J.M., Spini, D., Widmer, E. (eds.) Towards an Interdisciplinary Perspective on the Life Course, Advances in Life Course Research, vol. 10, pp. 289–320. Elsevier, Amsterdam (2005)Google Scholar
  10. 10.
    Yamaguchi, K.: Event history analysis. In: ASRM 28. Sage, Newbury Park (1991)Google Scholar
  11. 11.
    Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine Learning 42(1/2), 31–60 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gilbert Ritschard
    • 1
  • Alexis Gabadinho
    • 1
  • Matthias Studer
    • 1
  • Nicolas S. Müller
    • 1
  1. 1.Department of Econometrics and Laboratory of DemographyUniversity of GenevaSwitzerland

Personalised recommendations