ARS/SD: An Associative Retrieval Service for the Semantic Desktop

  • Peter Scheir
  • Chiara Ghidini
  • Roman Kern
  • Michael Granitzer
  • Stefanie N. Lindstaedt
Part of the Studies in Computational Intelligence book series (SCI, volume 221)

Abstract

While it is agreed that semantic enrichment of resources would lead to better search results, at present the low coverage of resources on the web with semantic information presents a major hurdle in realizing the vision of search on the Semantic Web. To address this problem we investigate how to improve retrieval performance in a setting where resources are sparsely annotated with semantic information. We suggest employing techniques from associative information retrieval to find relevant material, which was not originally annotated with the concepts used in a query. We present an associative retrieval service for the Semantic Desktop and evaluate if the use of associative retrieval techniques increases retrieval performance.

Evaluation of new retrieval paradigms, as retrieval in the Semantic Web or on the Semantic Desktop, presents an additional challenge as no off-the-shelf test corpora for evaluation exist. Hence we give a detailed description of the approach taken to the evaluation of the information retrieval service we have built for the Semantic Desktop.

Keywords

Information Retrieval Semantic Similarity Domain Ontology Query Expansion Semantic Annotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying communities of practice through ontology network analysis. IEEE Intell. Syst. 18(2), 18–25 (2003)CrossRefGoogle Scholar
  2. 2.
    Bechhofer, S., Goble, C.: Towards annotation using DAML+OIL. In: K-CAP 2001 workshop on Knowledge Markup and Semantic Annotationq (2001)Google Scholar
  3. 3.
    Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: SIGIR 2000: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 33–40. ACM Press, New York (2000)CrossRefGoogle Scholar
  4. 4.
    Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In: SIGIR 2004: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 25–32. ACM Press, New York (2004)Google Scholar
  5. 5.
    Carterette, B., Allan, J., Sitaraman, R.: Minimal test collections for retrieval evaluation. In: SIGIR 2006: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 268–275. ACM Press, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Castells, P., Fernández, M., Vallet, D.: An adaptation of the vector-space model for ontology-based information retrieval. IEEE Trans. Knowl. Data Eng. 19, 261–272 (2007)CrossRefGoogle Scholar
  7. 7.
    Chirita, P.-A., Costache, S., Nejdl, W., Paiu, R.: Beagle++: Semantically enhanced searching and ranking on the desktop. The Semantic Web: Research and Applications (2006)Google Scholar
  8. 8.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11, 453–482 (1997)CrossRefGoogle Scholar
  9. 9.
    Decker, S., Frank, M.R.: The networked semantic desktop. In: WWW Workshop on Application Design, Development and Implementation Issues in the Semantic Web (2004)Google Scholar
  10. 10.
    Fuhr, N.: Information Retrieval: Skriptum zur Vorlesung im SS 06 (December 19, 2006)Google Scholar
  11. 11.
    Handschuh, S.: Semantic Web Services: Concepts, Technologies, and Applications. In: Semantic Annotation of Resources in the Semantic Web, pp. 135–155. Springer New York, Inc., Secaucus (2007)Google Scholar
  12. 12.
    Heflin, J., Hendler, J.: Searching the web with Shoe. In: Artificial Intelligence for Web Search. Papers from the AAAI Workshop. WS-00-01 (2000)Google Scholar
  13. 13.
    Hendler, J.: The dark side of the semantic web. IEEE Intell. Syst. 22, 2–4 (2007)Google Scholar
  14. 14.
    Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annotation, indexing, and retrieval. Journal of Web Semantics 2, 49–79 (2004)Google Scholar
  15. 15.
    Lindstaedt, S.N., Mayer, H.: A storyboard of the aposdle vision. In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp. 628–633. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Mandl, T.: Tolerantes Information Retrieval. Neuronale Netze zur Erhöhung der Adaptivität und Flexibilität bei der Informationssuche. PhD thesis, University of Hildesheim (2001)Google Scholar
  17. 17.
    McCool, R.: Rethinking the semantic web, part 1. IEEE Internet Comput. 9(6), 88–97 (2005)CrossRefGoogle Scholar
  18. 18.
    Pammer, V., Scheir, P., Lindstaedt, S.N.: Two protégé plug-ins for supporting document-based ontology engineering and ontological annotation at document level. In: 10th International Protégé Conference, Budapest, Hungary (July 15-18, 2007)Google Scholar
  19. 19.
    Robertson, S.E., Spärck Jones, K.: Simple, proven approaches to text retrieval. Technical report, University of Cambridge, Computer Laboratory (1994)Google Scholar
  20. 20.
    Rocha, C., Schwabe, D., de Aragão, M.P.: A hybrid approach for searching in the semantic web. In: Proceedings of the 13th international conference on World Wide Web, WWW 2004 (2004)Google Scholar
  21. 21.
    Sabou, M., d’Aquin, M., Motta, E.: Using the semantic web as background knowledge for ontology mapping. In: International Workshop on Ontology Matching, OM-2006 (2006)Google Scholar
  22. 22.
    Salton, G.: Associative document retrieval techniques using bibliographic information. JACM 10, 440–457 (1963)MATHCrossRefGoogle Scholar
  23. 23.
    Salton, G.: Automatic Information Organization and Retrieval. McGraw Hill, New York (1968)Google Scholar
  24. 24.
    Sauermann, L., Bernardi, A., Dengel, A.: Overview and outlook on the semantic desktop. In: Proceedings of the 1st Workshop on The Semantic Desktop at the ISWC 2005 Conference (2005)Google Scholar
  25. 25.
    Scheir, P., Pammer, V., Lindstaedt, S.N.: Information retrieval on the semantic web - does it exist? In: LWA 2007, Lernen - Wissensentdeckung - Adaptivität, September 24–26, 2007. Halle/Saale (2007)Google Scholar
  26. 26.
    Spärck Jones, K.: What’s new about the semantic web?: some questions. SIGIR Forum 38, 18–23 (2004)CrossRefGoogle Scholar
  27. 27.
    Wu, Z., Palmer, M.S.: Verb semantics and lexical selection. In: Meeting of the Association for Computational Linguistics (ACL), pp. 133–138 (1994)Google Scholar
  28. 28.
    Yilmaz, E., Aslam, J.A.: Estimating average precision with incomplete and imperfect judgments. In: CIKM 2006: Proceedings of the 15th ACM international conference on Information and knowledge management, pp. 102–111. ACM Press, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Scheir
    • 1
  • Chiara Ghidini
    • 2
  • Roman Kern
    • 3
  • Michael Granitzer
    • 3
  • Stefanie N. Lindstaedt
    • 3
  1. 1.Graz University of TechnologyAustria
  2. 2.Fondazione Bruno KesslerItaly
  3. 3.Know-CenterGrazAustria

Personalised recommendations