In this paper we investigate the minimum distance of generalized toric codes using an order bound like approach. We apply this technique to a family of codes that includes the Joyner code. For some codes in this family we are able to determine the exact minimum distance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beelen, P.: The order bound for general algebraic geometric codes. Finite Fields Appl. 13(3), 665–680 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beelen, P., Pellikaan, R.: The Newton polygon of plane curves with many rational points. Des. Codes Cryptogr. 21(1-3), 41–67 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Danilov, V.I.: The geometry of toric varieties. Russian Math. Surverys 33(2), 97–154 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Duursma, I.M.: Majority coset decoding. IEEE Trans. Inform. Theory 39(3), 1067–1070 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Feng, G.L., Rao, T.R.N.: Improved geometric Goppa codes. I. Basic theory. IEEE Trans. Inform. Theory 41(6, part 1), 1678–1693 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fulton, W.: Introduction to toric varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  7. 7.
    Hansen, J.P.: Toric surfaces and error-correcting codes. In: Buchmann, J., Høholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding theory, cryptography and related areas (Guanajuato, 1998), pp. 132–142. Springer, Berlin (2000)CrossRefGoogle Scholar
  8. 8.
    Hansen, J.P.: Toric varieties Hirzebruch surfaces and error-correcting codes. Appl. Algebra Engrg. Comm. Comput. 13(4), 289–300 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Høholdt, T., van Lint, J.H., Pellikaan, R.: Algebraic geometry of codes. In: Handbook of coding theory, vol. I, II, pp. 871–961. North-Holland, Amsterdam (1998)Google Scholar
  10. 10.
    Husemöller, D.: Elliptic curves, 2nd edn. Graduate Texts in Mathematics, vol. 111. Springer, New York (2004)zbMATHGoogle Scholar
  11. 11.
    Joyner, D.: Toric codes over finite fields. Appl. Algebra Engrg. Comm. Comput. 15(1), 63–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Little, J., Schenck, H.: Toric surface codes and Minkowski sums. SIAM J. Discrete Math. 20(4), 999–1014 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Little, J., Schwarz, R.: On toric codes and multivariate Vandermonde matrices. Appl. Algebra Engrg. Comm. Comput. 18(4), 349–367 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Martínez-Moro, E., Ruano, D.: Toric codes. In: Advances in Algebraic Geometry Codes. Series on Coding Theory and Cryptology, vol. 5, pp. 295–322. World Scientific, Singapore (2008)CrossRefGoogle Scholar
  15. 15.
    Ruano, D.: On the parameters of r-dimensional toric codes. Finite Fields Appl. 13(4), 962–976 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ruano, D.: On the structure of generalized toric codes. J. Symb. Comput. 44(5), 499–506 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Soprunov, I., Soprunova, E.: Toric surface codes and minkowski length of polygons. arXiv:0802.2088v1 [math. AG] (2008)Google Scholar
  18. 18.
    Serre, J.-P.: Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini. C. R. Acad. Sci. Paris Sér. I Math. 296(9), 397–402 (1983)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Tsfasman, M.A., Vlăduţ, S.G.: Algebraic-geometric codes, Dordrecht. Mathematics and its Applications (Soviet Series), vol. 58 (1991)Google Scholar
  20. 20.
    Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. 2(4), 521–560 (1969)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Beelen
    • 1
  • Diego Ruano
    • 1
  1. 1.DTU-Mathematics, Technical University of Denmark2800 Kgs. LyngbyDenmark

Personalised recommendations