An Adaptive Approach for Affine-Invariant 2D Shape Description

  • A. Bandera
  • E. Antúnez
  • R. Marfil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5524)


In this paper, a new algorithm for 2D shape characterization is proposed. This method characterizes a planar object using a triangle-area representation obtained from its closed contour. As main novelty with respect to previous approaches, in our approach the triangle side lengths at each contour point are adapted to the local variations of the shape, removing noise from the contour without missing relevant points. This representation is invariant to affine transformations, and robust against noise. The performance of our proposal is demonstrated using a standard test on the well-known MPEG-7 CE-shape-1 data set.


Chord Length Dynamic Time Warping Shape Descriptor Adaptive Approach Shape Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alajlan, N., El Rube, I., Kamel, M., Freeman, G.: Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recognition 40, 1911–1920 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Marji, M., Siy, P.: A new algorithm for dominant points detection and polygonization of digital curves. Pattern Recognition 36, 2239–2251 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization. Kluwer Academic Publishers, Dordrecht (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Adamek, T., O’Connor, N.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuit Syst. Video Technol. 14, 742–753 (2004)CrossRefGoogle Scholar
  5. 5.
    Arica, N., Vural, F.: Bas: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognition Letters 24, 1627–1639 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bandera, A., Urdiales, C., Arrebola, F., Sandoval, F.: Corner detection by means of adaptively estimated curvature function. Electronics Letters 36, 124–126 (2000)CrossRefGoogle Scholar
  7. 7.
    Ansari, N., Delp, E.: On detecting dominant points. Pattern Recognition 24, 441–451 (1991)CrossRefGoogle Scholar
  8. 8.
    Teh, C., Chin, R.: On the detection of dominant points on digital curves. IEEE Trans. on Pattern Anal. Machine Intell. 11, 859–872 (1989)CrossRefGoogle Scholar
  9. 9.
    Wu, W.: An adaptive method for detecting dominant points. Pattern Recognition 36, 2231–2237 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Shen, D., Ip, H., Teoh, E.: Affine invariant detection of perceptually parallel 3D planar curves. Pattern Recognition 33, 1909–1918 (2000)CrossRefGoogle Scholar
  11. 11.
    Obdrzálek, S., Matas, J.: Object recognition using local affine frames on maximally stable extremal regions. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 83–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Bandera
    • 1
  • E. Antúnez
    • 2
  • R. Marfil
    • 1
  1. 1.Grupo ISIS, Dpto. Tecnología ElectrónicaUniversity of MálagaSpain
  2. 2.PRIPVienna University of TechnologyAustria

Personalised recommendations