Advertisement

Improving Scene Recognition through Visual Attention

  • Fernando López-García
  • Anton García-Díaz
  • Xose Ramon Fdez-Vidal
  • Xose Manuel Pardo
  • Raquel Dosil
  • David Luna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5524)

Abstract

In this paper we study how the use of a novel model of bottom-up saliency (visual attention), based on local energy and color, can significantly accelerate scene recognition and, at the same time, preserve the recognition performance. To do so, we use a mobile robot-like application where scene recognition is performed through the use of SIFT features to characterize the different scenarios, and the Nearest Neighbor rule to carry out the classification. Experimental work shows that important reductions in the size of the database of prototypes can be achieved (17.6% of the original size) without significant losses in recognition performance (from 98.5% to 96.1%), thus accelerating the classification task.

Keywords

Visual Attention Recognition Performance Database Size Sift Feature Scene Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Treisman, A., Gelade, G.: A feature integration theory of attention. Cognitive Psychologhy 12, 97–136 (1980)CrossRefGoogle Scholar
  2. 2.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4(4), 219–227 (1985)Google Scholar
  3. 3.
    García-Díaz, A., Fdez-Vidal, X.R., Dosil, R., Pardo, X.M.: Local Energy Variability as a Generic Measure of Bottom-Up Salience. In: Yin, P.-Y. (ed.) Pattern Recognition Techniques, Technology and Applications, In-Teh, Vienna, ch. 1, pp. 1–24 (2008)Google Scholar
  4. 4.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)CrossRefGoogle Scholar
  5. 5.
    Milanese, R., Gil, S., Pun, T.: Attentive mechanisms for dynamic and static scene analysis. Optical Engineering 34(8), 2428–2434 (1995)CrossRefGoogle Scholar
  6. 6.
    Bonaiuto, J.J., Itti, L.: Combining attention and recognition for rapid scene analysis. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. (III)90, p. 90 (2005)Google Scholar
  7. 7.
    Walther, D., Rutishauser, U., Koch, C., Perona, P.: Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Computer Vision and Image Understanding (100), 1–63 (2005)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    Field, D.J.: Relations Between the Statistics of Natural Images and the Response Properties of Cortical Cells. Journal of the Optical Society of America A 4(12), 2379–2394 (1987)CrossRefGoogle Scholar
  10. 10.
    Kovesi, P.: Invariant Measures of Image Features from Phase Information. Ph.D. Thesis, The University or Western Australia (1996)Google Scholar
  11. 11.
    Morrone, M.C., Burr, D.C.: Feature Detection in Human Vision: A Phase-Dependent Energy Model. Proceedings of the Royal Society of London B 235, 221–245 (1988)CrossRefGoogle Scholar
  12. 12.
    Zetzsche, C.: Natural Scene Statistics and Salient Visual Features. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, ch. 37, pp. 226–232. Elsevier Academia Press, Amsterdam (2005)CrossRefGoogle Scholar
  13. 13.
    Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000)CrossRefGoogle Scholar
  14. 14.
    Weliky, M., Fiser, J., Hunt, R.H., Wagner, D.N.: Coding of natural scenes in primary visual cortex. Neuron 37, 703–718 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fernando López-García
    • 1
  • Anton García-Díaz
    • 2
  • Xose Ramon Fdez-Vidal
    • 2
  • Xose Manuel Pardo
    • 2
  • Raquel Dosil
    • 2
  • David Luna
    • 2
  1. 1.Grupo de Visión por Computador, Departamento de Informática de Sistemas y ComputadoresUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Grupo de Visión Artificial, Departamento de Electrónica e ComputaciónUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations