Match Selection in Batch Mosaicing Using Mutual Information

  • Armagan Elibol
  • Nuno Gracias
  • Rafael Garcia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5524)

Abstract

Large area photo-mosaics are widely used in many different applications such as optical mapping, panorama creation and autonomous vehicle navigation. When the trajectory of the camera provides an overlap between non-consecutive images (closed-loop trajectory), it is essential to detect such events in order to get globally coherent mosaics. Recent advances in image matching methods allow for registering pairs of images in the absence of prior information on orientation, scale or overlap between images. Owing to this, recent batch mosaicing algorithms attempt to detect non-consecutive overlapping images using exhaustive matching of image pairs. This paper proposes the use of Observation Mutual Information as a criterion to evaluate the benefit of potential matches between pairs of images. This allows for ranking and ordering a list of potential matches in order to make the loop-closing process more efficient. In this paper, the Observation Mutual Information criterion is compared against other strategies and results are presented using underwater imagery.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  2. 2.
    Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Gracias, N., Zwaan, S., Bernardino, A., Santos-Victor, J.: Mosaic based navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering 28(3), 609–624 (2003)CrossRefGoogle Scholar
  4. 4.
    Sawhney, H., Hsu, S., Kumar, R.: Robust video mosaicing through topology inference and local to global alignment. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 103–119. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Yao, J., Chamb, W.K.: Robust multi-view feature matching from multiple unordered views. Pattern Recognition 40(11), 3081–3099 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74(1), 59–73 (2007)CrossRefGoogle Scholar
  8. 8.
    Szeliski, R.: Image mosaicing for tele-reality applications. In: IEEE Workshop on Applications of Computer Vision, pp. 44–53 (1994)Google Scholar
  9. 9.
    Can, A., Stewart, C., Roysam, B.: Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, p. 292 (1999)Google Scholar
  10. 10.
    Richmond, K., Rock, S.M.: An operational real-time large-scale visual mosaicking and navigation system. In: MTS/IEEE OCEANS Conference, Boston, USA (2006)Google Scholar
  11. 11.
    Garcia, R., Puig, J., Ridao, P., Cufí, X.: Augmented state Kalman filtering for AUV navigation. In: IEEE International Conference on Robotics and Automation, Washington D.C., vol. 3, pp. 4010–4015 (2002)Google Scholar
  12. 12.
    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Homography based Kalman filter for mosaic building. applications to UAV position estimation. In: IEEE International Conference on Robotics and Automation, pp. 2004–2009 (2007)Google Scholar
  13. 13.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Haralick, R.: Propagating covariance in computer vision. In: Proceedings of the Theoretical Foundations of Computer Vision, TFCV on Performance Characterization in Computer Vision, Germany, pp. 95–114 (1998)Google Scholar
  15. 15.
    Grocholsky, B.: Information-Theoretic Control of Multiple Sensor Platforms. PhD thesis, University of Sydney (2002)Google Scholar
  16. 16.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Gracias, N., Victor, J.: Underwater mosaicing and trajectory reconstruction using global alignment. In: MTS/IEEE OCEANS Conference, vol. IV, pp. 2557–2563 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Armagan Elibol
    • 1
  • Nuno Gracias
    • 1
  • Rafael Garcia
    • 1
  1. 1.Computer Vision and Robotics GroupUniversity of GironaSpain

Personalised recommendations