Facial Reconstruction and Alignment Using Photometric Stereo and Surface Fitting

  • Gary A. Atkinson
  • Abdul R. Farooq
  • Melvyn L. Smith
  • Lyndon N. Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5524)


This paper presents a novel 3D face shape capture device suitable for practical face recognition applications. A new surface fitting based face alignment algorithm is then presented to normalise the pose in preparation for recognition. The 3D data capture consists of a photometric stereo rig capable of acquiring four images, each with a different light source direction, in just 15ms. This high-speed data acquisition process allows all images to be taken without significant movement between images, a previously highly restrictive disadvantage of photometric stereo. The alignment algorithm is based on fitting bivariate polynomials to the reconstructed faces and calculating the pitch, roll and yaw from the resulting polynomial parameters. Successful experiments are performed on a range of faces and pose variations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhao, W., Chellappa, R. (eds.): Face Processing: Advanced Modeling and Methods. Elsevier, Amsterdam (2006)Google Scholar
  2. 2.
    Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition. Comp. Vis. Im. Understanding 101, 1–15 (2006)CrossRefGoogle Scholar
  3. 3.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 139–144 (1980)CrossRefGoogle Scholar
  4. 4.
    Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. Patt. Anal. Mach. Intell. 14, 239–256 (1992)CrossRefGoogle Scholar
  5. 5.
    Kee, S.C., Lee, K.M., Lee, S.U.: Illumination invariant face recognition using photometric stereo. In: IEICE Trans. Inf. and Syst., vol. E83-D, pp. 1466–1474 (2000)Google Scholar
  6. 6.
    Zhou, S., Chellappa, R., Jacobs, D.: Characterization of human faces under illumination variations using rank, integrability, and symmetry constraints. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 588–601. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Zhou, S., Aggarwal, G., Chellappa, R., Jacobs, D.: Appearance characterization of linear lambertian objects, generalized photometric stereo, and illumination-invariant face recognition. IEEE Trans. Patt. Anal. Mach. Intell. 29, 230–245 (2007)CrossRefGoogle Scholar
  8. 8.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Patt. Anal. Mach. Intell. 23, 643–660 (2001)CrossRefGoogle Scholar
  9. 9.
    Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: IEEE ICIP, pp. 900–903 (2002)Google Scholar
  10. 10.
    Forsyth, D.A., Ponce, J.: Computer Vision, A Modern Approach. Prentice-Hall, Upper Saddle River (2003)Google Scholar
  11. 11.
    Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Patt. Anal. Mach. Intell. 10, 439–451 (1988)CrossRefzbMATHGoogle Scholar
  12. 12.
    Mian, A.S., Bennamoun, M., Owens, R.: An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Trans. Patt. Anal. Mach. Intell. 29, 1927–1943 (2007)CrossRefGoogle Scholar
  13. 13.
    Watt, A.H., Policarpo, F.: The Computer Image. Addison-Wesley, Reading (1998)Google Scholar
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gary A. Atkinson
    • 1
  • Abdul R. Farooq
    • 1
  • Melvyn L. Smith
    • 1
  • Lyndon N. Smith
    • 1
  1. 1.University of West EnglandBristolUK

Personalised recommendations