WiSeKit: A Distributed Middleware to Support Application-Level Adaptation in Sensor Networks

  • Amirhosein Taherkordi
  • Quan Le-Trung
  • Romain Rouvoy
  • Frank Eliassen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5523)


Applications for Wireless Sensor Networks (WSNs) are being spread to areas in which the contextual parameters modeling the environment are changing over the application lifespan. Whereas software adaptation has been identified as an effective approach for addressing context-aware applications, the existing work on WSNs fails to support context-awareness and mostly focuses on developing techniques to reprogram the whole sensor node rather than reconfiguring a particular portion of the sensor application software. Therefore, enabling adaptivity in the higher layers of a WSN architecture such as the middleware and application layers, beside the consideration in the lower layers, becomes of high importance. In this paper, we propose a distributed component-based middleware approach, named WiSeKit, to enable adaptation and reconfiguration of WSN applications. In particular, this proposal aims at providing an abstraction to facilitate development of adaptive WSN applications. As resource availability is the main concern of WSNs, the preliminary evaluation shows that our middleware approach promises a lightweight, fine-grained and communication-efficient model of application adaptation with a very limited memory and energy overhead.


wireless sensor networks distributed middleware adaptation reconfiguration 


  1. 1.
    Puccinelli, D., Haenggi, M.: Wireless Sensor Networks: Applications and Challenges of Ubiquitous Sensing. IEEE Circuits and Systems 5(3) (2005)Google Scholar
  2. 2.
    Costa, P., et al.: The RUNES middleware for networked embedded systems and its application in a disaster management scenario. In: Proc. of PERCOM (2007)Google Scholar
  3. 3.
    Akyildiz, I.F., Kasimoglu, I.H.: Wireless Sensor and Actor Networks: Research challenges. Ad Hoc Networks Journal 2(4), 351–367 (2004)CrossRefGoogle Scholar
  4. 4.
    Dunkels, A., Grnvall, B., Voigt, T.: Contiki-A Lightweight and Flexible Operating System for Tiny Networked Sensors. In: Proc. of EmNetS-I (2004)Google Scholar
  5. 5.
    Taherkordi, A., Eliassen, F., Rouvoy, R., e-Trung, Q.: ReWiSe: A New Component Model for Lightweight Software Reconfiguration in Wireless Sensor Networks. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008 Workshops. LNCS, vol. 5333, pp. 415–425. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Horré, W., Michiels, S., Joosen, W., Verbaeten, P.: DAVIM: Adaptable Middleware for Sensor Networks. IEEE Distributed Systems Online 9(1) (2008)Google Scholar
  7. 7.
    Costa, P., et al.: A Reconfigurable Component-based Middleware for Networked Embedded Systems. Journal of Wireless Information Networks 14(2) (2007)Google Scholar
  8. 8.
    Grace, P., Coulson, G., Blair, G., Porter, B., Hughes, D.: Dynamic reconfiguration in sensor middleware. In: Proc. of the 1st ACM MidSens, Australia (2006)Google Scholar
  9. 9.
    Mottola, L., Picco, G., Sheikh, A.: FiGaRo: Fine-Grained Software Reconfiguration for Wireless Sensor Networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 286–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Huebscher, M.C., McCann, J.A.: Adaptive middleware for context-aware applications in smart homes. In: Proc. of the MPAC, Canada, pp. 111–116 (2004)Google Scholar
  11. 11.
    Mozer, M.: Lessons from an Adaptive Home. In: Smart Environments: Technology, Protocols, and Applications, pp. 273–298. Wiley, Chichester (2004)Google Scholar
  12. 12.
    Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dynamic Configuration of Resource-Aware Services. In: ICSE, pp. 604–613. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  13. 13.
    Garlan, D., et al.: Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)CrossRefGoogle Scholar
  14. 14.
    Lutfiyya, H., et al.: Issues in Managing Soft QoS Requirements in Distributed Systems Using a Policy-Based Framework. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, p. 185. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–52 (2003)CrossRefGoogle Scholar
  16. 16.
    Kephart, J.O., Das, R.: Achieving Self-Management via Utility Functions. IEEE Internet Computing 11(1), 40–48 (2007)CrossRefGoogle Scholar
  17. 17.
    Taherkordi, A., Rouvoy, R., Le-Trung, Q., Eliassen, F.: A Self-Adaptive Context Processing Framework for Wireless Sensor Networks. In: Proc. of the 3rd ACM MidSens in conjunction with Middleware 2009, Belgium, pp. 7–12 (2008)Google Scholar
  18. 18.
    Le-Trung, Q., Engelstad, P., Taherkordi, A., Pham, N.H., Skeie, T.: Information Storage, Reduction, and Dissemination in Sensor Networks: A Survey, In: Proc. of the IEEE IRSN Workshop, Las Vegas, US (2009)Google Scholar
  19. 19.
    Paula, J., et al.: Transparent dynamic reconfiguration for CORBA. In: Proc. of the 3rd International Symposium on Distributed Objects and Applications (2001)Google Scholar
  20. 20.
    Zhang, J., Cheng, B., Yang, Z., McKinley, P.: Enabling safe dynamic component-based software adaptation. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III. LNCS, vol. 3549, pp. 194–211. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-Time Dynamic Linking for Reprogramming Wireless Sensor Networks. In: Proc. of ACM SenSys (2006)Google Scholar
  22. 22.
  23. 23.
    Balasubramaniam, D., Dearle, A., Morrison, R.: A Composition-based Approach to the Construction and Dynamic Reconfiguration of Wireless Sensor Network Applications. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 206–214. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Amirhosein Taherkordi
    • 1
  • Quan Le-Trung
    • 1
  • Romain Rouvoy
    • 1
    • 2
  • Frank Eliassen
    • 1
  1. 1.Department of InformaticsUniversity of OsloBlindern
  2. 2.ADAM Project-Team, INRIA-USTL-CNRSParc Scientifique de la Haute BornePark Plaza

Personalised recommendations