Advertisement

A More Relaxed Model for Graph-Based Data Clustering: s-Plex Editing

  • Jiong Guo
  • Christian Komusiewicz
  • Rolf Niedermeier
  • Johannes Uhlmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5564)

Abstract

We introduce the s -Plex Editing problem generalizing the well-studied Cluster Editing problem, both being NP-hard and both being motivated by graph-based data clustering. Instead of transforming a given graph by a minimum number of edge modifications into a disjoint union of cliques (Cluster Editing), the task in the case of s -Plex Editing is now to transform a graph into a disjoint union of so-called s-plexes. Herein, an s-plex denotes a vertex set inducing a (sub)graph where every vertex has edges to all but at most s vertices in the s-plex. Cliques are 1-plexes. The advantage of s-plexes for s ≥ 2 is that they allow to model a more relaxed cluster notion (s-plexes instead of cliques), which better reflects inaccuracies of the input data. We develop a provably efficient and effective preprocessing based on data reduction (yielding a so-called problem kernel), a forbidden subgraph characterization of s-plex cluster graphs, and a depth-bounded search tree which is used to find optimal edge modification sets. Altogether, this yields efficient algorithms in case of moderate numbers of edge modifications.

Keywords

Search Tree Input Graph Reduction Rule Cluster Graph Relax Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balasundaram, B., Butenko, S., Hicks, I.V., Sachdeva, S.: Clique relaxations in social network analysis: The maximum k-plex problem (manuscript, 2006)Google Scholar
  2. 2.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-3), 89–113 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameterized algorithms for cluster editing. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 1–12. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 289–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H.C., Mountz, J.D., Baldwin, N.E., Langston, M.A., Threadgill, D.W., Manly, K.F., Williams, R.W.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genetics 37(3), 233–242 (2005)CrossRefGoogle Scholar
  6. 6.
    Cook, V.J., Sun, S.J., Tapia, J., Muth, S.Q., Argüello, D.F., Lewis, B.L., Rothenberg, R.B., McElroy, P.D., The Network Analysis Project Team: Transmission network analysis in tuberculosis contact investigations. Journal of Infectious Diseases 196, 1517–1527 (2007)Google Scholar
  7. 7.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Guo, J.: A more effective linear kernelization for Cluster Editing. Theoretical Computer Science 410(8), 718–726 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  10. 10.
    Komusiewicz, C., Hüffner, F., Moser, H., Niedermeier, R.: Isolation concepts for enumerating dense subgraphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 140–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Memon, N., Kristoffersen, K.C., Hicks, D.L., Larsen, H.L.: Detecting critical regions in covert networks: A case study of 9/11 terrorists network. In: Proc. 2nd ARES, pp. 861–870. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  12. 12.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. Journal of Mathematical Sociology 6, 139–154 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1–2), 173–182 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  17. 17.
    van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jiong Guo
    • 1
  • Christian Komusiewicz
    • 1
  • Rolf Niedermeier
    • 1
  • Johannes Uhlmann
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations