Advertisement

Orca Reduction and ContrAction Graph Clustering

  • Daniel Delling
  • Robert Görke
  • Christian Schulz
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5564)

Abstract

During the last years, a wide range of huge networks has been made available to researchers. The discovery of natural groups, a task called graph clustering, in such datasets is a challenge arising in many applications such as the analysis of neural, social, and communication networks.

We here present Orca, a new graph clustering algorithm, which operates locally and hierarchically contracts the input. In contrast to most existing graph clustering algorithms, which operate globally, Orca is able to cluster inputs with hundreds of millions of edges in less than 2.5 hours, identifying clusterings with measurably high quality. Our approach explicitly avoids maximizing any single index value such as modularity, but instead relies on simple and sound structural operations. We present and discuss the Orca algorithm and evaluate its performance with respect to both clustering quality and running time, compared to other graph clustering algorithms.

Keywords

Road Network Quality Index Dense Region Community Detection Priority Queue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CiteSeer, Scientific Literature Digital Library, http://citeseer.ist.psu.edu
  2. 2.
    CAIDA - Cooperative Association for Internet Data Analysis, http://www.caida.org
  3. 3.
    DBLP - DataBase systems and Logic Programming (2007), http://dblp.uni-trier.de
  4. 4.
    Finding communities in large networks (2008), http://findcommunities.googlepages.com
  5. 5.
    IGRAPH - The igraph library (2008), http://cneurocvs.rmki.kfki.hu/igraph
  6. 6.
    Laboratory for Web Algorithmics (2008), http://law.dsi.unimi.it
  7. 7.
    An, Y., Janssen, J., Milios, E.E.: Characterizing and Mining the Citation Graph of the Computer Science Literature. Knowledge and Information Systems 6(6), 664–678 (2004)CrossRefGoogle Scholar
  8. 8.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.: Complexity and Approximation - Combinatorial Optimization Problems and Their Approximability Properties, 2nd edn. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  9. 9.
    Barthélémy, M., Fortunato, S.: Resolution limit in community detection. Proc. of the National Academy of Science of the USA 104(1), 36–41 (2007)CrossRefGoogle Scholar
  10. 10.
    Blondel, V., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. JSM: Theory and Experiment 2008(10) (2008)Google Scholar
  11. 11.
    Brandes, U., Delling, D., Gaertler, M., Görke, R., Höfer, M., Nikoloski, Z., Wagner, D.: On Modularity Clustering. IEEE TKDE 20(2), 172–188 (2008)Google Scholar
  12. 12.
    Brandes, U., Erlebach, T. (eds.): Network Analysis: Methodological Foundations. LNCS, vol. 3418. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  13. 13.
    Brandes, U., Gaertler, M., Wagner, D.: Engineering Graph Clustering: Models and Experimental Evaluation. ACM JEA 12(1.1), 1–26 (2007)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Castellano, C., Fortunato, S.: Community Structure in Graphs. To appear as chapter of Springer’s Encyclopedia of Complexity and Systems Science (2008) arXiv:0712.2716v1Google Scholar
  15. 15.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70(066111) (2004)Google Scholar
  16. 16.
    Delling, D., Gaertler, M., Wagner, D.: Generating Significant Graph Clusterings. In: Proc. of ECCS 2006 (2006)Google Scholar
  17. 17.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS. Springer, Heidelberg (to appear, 2009)Google Scholar
  18. 18.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): 9th DIMACS Implementation Challenge - Shortest Paths (November 2006)Google Scholar
  19. 19.
    Derényi, I., Palla, G., Vicsek, T.: Clique Percolation in Random Networks. Physical Review Letters 94 (2005)Google Scholar
  20. 20.
    Duch, J., Arenas, A.: Community Detection in Complex Networks using Extremal Optimization. Physical Review E 72(027104), 1–4 (2005)Google Scholar
  21. 21.
    Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph Clustering and Minimum Cut Trees. Internet Mathematics 1(4), 385–408 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Gaertler, M., Görke, R., Wagner, D.: Significance-Driven Graph Clustering. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 11–26. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Gaertler, M., Görke, R., Wagner, D., Wagner, S.: How to Cluster Evolving Graphs. In: Proc. of ECCS 2006 (2006)Google Scholar
  24. 24.
    Kannan, R., Vempala, S., Vetta, A.: On Clusterings: Good, Bad, Spectral. Journal of the ACM 51(3), 497–515 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Lancichinetti, A., Fortunato, S., Kertéz, J.: Detecting the Overlapping and Hierarchical Community Structure of Complex Networks (2008), http://arxiv.org/abs/0802.1218
  26. 26.
    Newman, M.E.J.: Analysis of Weighted Networks. Physical Review E 70(056131), 1–9 (2004)Google Scholar
  27. 27.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(026113) (2004)Google Scholar
  28. 28.
    Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random Walks. Journal of Graph Algorithms and Applications 10(2), 191–218 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Seidman, S.B.: Network Structure and Minimum Degree. Social Networks 5, 269–287 (1983)CrossRefMathSciNetGoogle Scholar
  30. 30.
    van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)Google Scholar
  31. 31.
    Wagner, D., Wagner, F.: Between Min Cut and Graph Bisection. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 744–750. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  32. 32.
    Zachary, W.W.: An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthropological Research 33, 452–473 (1977)CrossRefGoogle Scholar
  33. 33.
    Wang, B., Phillips, J.M., Schreiber, R., Wilkinson, D., Mishra, N., Tarjan, R.: Spatial Scan Statistics for Graph Clustering. In: Proc. of SDM 2008, Atlanta (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Delling
    • 1
  • Robert Görke
    • 1
  • Christian Schulz
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Faculty of Informatics, Universität Karlsruhe (TH)Germany

Personalised recommendations