The Declarative Approach to Business Process Execution: An Empirical Test

  • Barbara Weber
  • Hajo A. Reijers
  • Stefan Zugal
  • Werner Wild
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5565)


Declarative approaches have been proposed to counter the limited flexibility of the traditional imperative modeling paradigm, but little empirical insights are available into their actual strengths and usage. In particular, it is unclear whether end-users are really capable of adjusting a particular plan to execute a business process when using a declarative approach. Our paper addresses this knowledge gap by describing the design, execution, and results of a controlled experiment in which varying levels of constraints are imposed on the way a group of subjects can execute a process. The results suggest that our subjects can effectively deal with increased levels of constraints when relying on a declarative approach. This outcome supports the viability of this approach, justifying its further development and application.


Business Process Constraint Violation Business Case Planning Approach Travel Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From Concept to Cash. Addison-Wesley, Reading (2006)Google Scholar
  2. 2.
    Weske, M.: Business Process Management: Concepts, Methods, Technology. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Lenz, R., Reichert, M.: IT Support for Healthcare Processes - Premises, Challenges, Perspectives. Data and Knowledge Engineering, 39–58 (2007)Google Scholar
  4. 4.
    Reichert, M., Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows Without Losing Control. JIIS 10, 93–129 (1998)Google Scholar
  5. 5.
    Van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for business process support. Data and Knowledge Engineering 53, 129–162 (2005)CrossRefGoogle Scholar
  6. 6.
    Pesic, M., Schonenberg, M., Sidorova, N., van der Aalst, W.: Constraint-Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and Validation in Flexible Workflows. Information Systems 30, 349–378 (2005)CrossRefGoogle Scholar
  8. 8.
    Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features -enhancing flexibility in process-aware information systems. Data and Knoweldge Engineering, 438–466 (2008)Google Scholar
  9. 9.
    Wainer, J., Bezerra, F., Barthelmess, P.: Tucupi: a flexible workflow system based on overridable constraints. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 498–502. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Hull, R., et al.: Declarative workflows that support easy modification and dynamic browsing. Software Engineering Notes 24, 69–78 (1999)CrossRefGoogle Scholar
  11. 11.
    Pesic, M., van der Aalst, W.: A declarative approach for flexible business processes. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Mulyar, N., Pesic, M., van der Aalst, W., Peleg, M.: Declarative and procedural approaches for modelling clinical guidelines: Addressing flexibility issues. In: BPM 2007 International Workshops, pp. 335–364 (2008)Google Scholar
  13. 13.
    Cohn, M.: Agile Estimating and Planning. Prentice Hall Professional, Englewood Cliffs (2006)Google Scholar
  14. 14.
    van der Aalst, W., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Language. Technical report, (2006)Google Scholar
  15. 15.
    Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to Users. PhD thesis, Eindhoven University of Technology (2008),
  16. 16.
    Wohlin, C., Runeson, R., Halst, M., Ohlsson, M., Regnell, B., Wesslen, A.: Experimentation in Software Engineering: an Introduction. Kluwer, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Runeson, P.: Using students as experiment subjects - an analysis on graduate and freshmen student data. In: Proc. EASE 2003, pp. 95–102 (2003)Google Scholar
  19. 19.
    Siegel, S.: Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York (1956)zbMATHGoogle Scholar
  20. 20.
    Kammer, P., Bolcer, G., Taylor, R., Hitomi, A., Bergman, M.: Techniques for Supporting Dynamic and Adaptive Workflow. Computer Supported Cooperative Work (CSCW) 9(3), 269–292 (2000)CrossRefGoogle Scholar
  21. 21.
    Reijers, H., Rigter, J., van der Aalst, W.: The case handling case. International Journal of Cooperative Information Systems 12, 365–391 (2003)CrossRefGoogle Scholar
  22. 22.
    Mutschler, B., Weber, B., Reichert, M.: Workflow management versus case handling - results from a controlled software experiment. In: Proc. SAC 2008, pp. 82–89 (2008)Google Scholar
  23. 23.
    Kleiner, N.: Supporting usage–centered workflow design: Why and how?. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 227–243. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Oba, M., Onoda, S., Komoda, N.: Evaluating the quantitative effects of workflow systems based on real case. In: Proc. HICSS 2000 (2000)Google Scholar
  25. 25.
    Reijers, H., van der Aalst, W.: The effectiveness of workflow management systems: Predictions and lessons learned. International Journal of Information Management 25, 458–472 (2005)CrossRefGoogle Scholar
  26. 26.
    Bowers, J., Button, G., Sharrock, W.: Workflow from within and without: technology and cooperative work on the print industry shopfloor. In: Proc. CSCW 1995, pp. 51–66. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  27. 27.
    Poelmans, S.: Workarounds and distributed viscosity in a workflow system: a case study. ACM SIGGROUP Bulletin 20, 11–12 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Barbara Weber
    • 1
  • Hajo A. Reijers
    • 2
  • Stefan Zugal
    • 1
  • Werner Wild
    • 3
  1. 1.Quality Engineering Research GroupUniversity of InnsbruckAustria
  2. 2.School of Industrial EngineeringEindhoven Univ. of TechnologyThe Netherlands
  3. 3.Evolution ConsultingInnsbruckAustria

Personalised recommendations