Advertisement

Verification of Parameterized Systems with Combinations of Abstract Domains

  • Naghmeh Ghafari
  • Arie Gurfinkel
  • Richard Trefler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5522)

Abstract

We present a framework for verifying safety properties of parameterized systems. Our framework is based on a combination of Abstract Interpretation and a backward-reachability algorithm. A parameterized system is a family of systems in which n processes execute the same program concurrently. The problem of parameterized verification is to decide whether for all values of n the system with n processes is correct. Despite well-known difficulties in analyzing such systems, they are of significant interest as they can describe a wide range of protocols from mutual-exclusion to transactional memory. We assume that neither the number of processes nor their statespaces are bounded a priori. Hence, each process may be infinte-state. Our key contribution is an abstract domain in which each element (a) represents the lower bound on the number of processes at a control location and (b) employs a numeric abstract domain to capture arithmetic relations between variables of the processes. We also provide an extrapolation operator for the domain to guarantee sound termination of the backward-reachability algorithm. Our abstract domain is generic enough to be instantiated by different well-known numeric abstract domains such as octagons and polyhedra. This makes the framework applicable to a wide range of parameterized systems.

Keywords

Control Location Parameterized System Model Check Critical Section Abstract Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-State Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Jonsson, B.: Verifying Networks of Timed Processes (Extended Abstract). In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Apt, K.R., Kozen, D.C.: Limits for Automatic Verification of Finite-State Concurrent Systems. Information Processing Letters 22(6), 307–309 (1986)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting Systems with Data. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 1–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular Model Checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bouajjani, A., Jurski, Y., Sighireanu, M.: A Generic Framework for Reasoning About Dynamic Networks of Infinite-State Processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 690–705. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Bozzano, M., Delzanno, G.: Beyond Parameterized Verification. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 221–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Bultan, T., Gerber, R., Pugh, W.: Model-Checking Concurrent Systems with Unbounded Integer Variables: Symbolic Representations, Approximations and Experimental Results. ACM Trans. on Programming Languages and Systems 21(4), 747–789 (1999)CrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about Networks with Many Identical Finite-State Processes. In: PODC 1986, pp. 240–248 (1986)Google Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Jha, S.: Verifying Parameterized Networks. ACM Trans. Program. Lang. Syst. 19(5), 726–750 (1997)CrossRefGoogle Scholar
  12. 12.
    Clarke, E.M., Talupur, M., Veith, H.: Environment Abstraction for Parameterized Verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Cousot, P., Cousot, R.: Abstract Interpretation Frameworks. J. of Logic and Computation 2(4), 511–547 (1992)CrossRefzbMATHGoogle Scholar
  14. 14.
    Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Variables of a Program. In: POPL 1978, pp. 84–97 (1978)Google Scholar
  15. 15.
    Emerson, E.A., Kahlon, V.: Reducing Model Checking of the Many to the Few. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Emerson, E.A., Namjoshi, K.S.: On Model Checking for Non-Deterministic Infinite-State Systems. In: LICS 1998, pp. 70–80 (1998)Google Scholar
  17. 17.
    German, S.M., Sistla, A.P.: Reasoning about Systems with Many Processes. J. of the ACM 39(3), 675–735 (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic Model Checking with Rich Assertional Languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 424–435. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Lamport, L.: “A New Solution of Dijkstra’s Concurrent Programming Problem”. Communication of ACM 17(8), 453–455 (1974)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lesens, D., Halbwachs, N., Raymond, P.: Automatic Verification of Parameterized Linear Networks of Processes. In: POPL 1997, pp. 346–357 (1997)Google Scholar
  21. 21.
    Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-memory multiprocessors. ACM Trans. on Computer Systems 9(1), 21–65 (1991)CrossRefGoogle Scholar
  22. 22.
    Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, ∞)-Counter Abstraction. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Naghmeh Ghafari
    • 1
  • Arie Gurfinkel
    • 2
  • Richard Trefler
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada
  2. 2.Software Engineering InstituteCarnegie Mellon UniversityUSA

Personalised recommendations