Improving Graph Classification by Isomap

  • Kaspar Riesen
  • Volkmar Frinken
  • Horst Bunke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5534)


Isomap emerged as a powerful tool for analyzing input patterns on manifolds of the underlying space. It builds a neighborhood graph derived from the observable distance information and recomputes pairwise distances as the shortest path on the neighborhood graph. In the present paper, Isomap is applied to graph based pattern representations. For measuring pairwise graph dissimilarities, graph edit distance is used. The present paper focuses on classification and employs a support vector machine in conjunction with kernel values derived from original and Isomap graph edit distances. In an experimental evaluation on five different data sets from the IAM graph database repository, we show that in four out of five cases the graph kernel based on Isomap edit distance performs superior compared to the kernel relying on the original graph edit distances.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  2. 2.
    Saul, L., Weinberger, K., Sha, F., Ham, J., Lee, D.: Spectral Methods for Dimensionality Reduction. In: Semi-Supervised Learning. MIT Press, Cambridge (2006)Google Scholar
  3. 3.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  4. 4.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)CrossRefMATHGoogle Scholar
  5. 5.
    Xiao, B., Torsello, A., Hancock, E.R.: Isotree: Tree clustering via metric embedding. Neurocomputing 71, 2029–2036 (2008)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific, Singapore (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Gärtner, T.: Kernels for Structured Data. World Scientific, Singapore (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proc. 20th Int. Conf. on Machine Learning, pp. 321–328 (2003)Google Scholar
  11. 11.
    Jain, B., Geibel, P., Wysotzki, F.: SVM learning with the Schur-Hadamard inner product for graphs. Neurocomputing 64, 93–105 (2005)CrossRefGoogle Scholar
  12. 12.
    Berg, C., Christensen, J., Ressel, P.: Harmonic Analysis on Semigroups. Springer, Heidelberg (1984)CrossRefMATHGoogle Scholar
  13. 13.
    Haasdonk, B.: Feature space interpretation of SVMs with indefinite kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(4), 482–492 (2005)CrossRefGoogle Scholar
  14. 14.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kaspar Riesen
    • 1
  • Volkmar Frinken
    • 1
  • Horst Bunke
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations