Advertisement

Applied Temporal RDF: Efficient Temporal Querying of RDF Data with SPARQL

  • Jonas Tappolet
  • Abraham Bernstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5554)

Abstract

Many applications operate on time-“sensitive” data. Some of these data are only valid for certain intervals (e.g., job-assignments, versions of software code), others describe temporal events that happened at certain points in time (e.g., a person’s birthday). Until recently, the only way to incorporate time into Semantic Web models was as a data type property. Temporal RDF, however, considers time as an additional dimension in data preserving the semantics of time.

In this paper we present a syntax and storage format based on named graphs to express temporal RDF. Given the restriction to preexisting RDF-syntax, our approach can perform any temporal query using standard SPARQL syntax only. For convenience, we introduce a shorthand format called τ-SPARQL for temporal queries and show how τ-SPARQL queries can be translated to standard SPARQL. Additionally, we show that, depending on the underlying data’s nature, the temporal RDF approach vastly reduces the number of triples by eliminating redundancies resulting in an increased performance for processing and querying. Last but not least, we introduce a new indexing approach method that can significantly reduce the time needed to execute time point queries (e.g., what happened on January 1st).

Keywords

Resource Description Framework Index Structure Triple Pattern Resource Description Framework Data Temporal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE Transactions on Knowledge and Data Engineering 19(2) (2007)Google Scholar
  2. 2.
    Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal RDF. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Klyne, G., Carroll, J.J.: Resource description framework (RDF): Concepts and abstract syntax. Technical report, W3C Recommendation (2004)Google Scholar
  4. 4.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Technical report, W3C Recommendation (2008)Google Scholar
  5. 5.
    Artale, A., Franconi, E.: Temporal description logics. In: Handbook of Time and Temporal Reasoning in Artificial Intelligence. Elsevier, Amsterdam (2005)Google Scholar
  6. 6.
    Welty, C.A., Fikes, R.: A reusable ontology for fluents in OWL. In: Proc. of the 4th Int’l. Conference On Formal Ontology In Information Systems (2006)Google Scholar
  7. 7.
    Kim, S.K., Song, M.Y., Kim, C., Jang, H.C.: Temporal ontology language for representing and reasoning interval-based temporal knowledge. In: Proc. of the 3rd Asian Semantic Web Conference (2008)Google Scholar
  8. 8.
    Milea, V., Frasincar, F., Kaymak, U.: Knowledge engineering in a temporal semantic web context. In: The Eighth Int’l. Conference on Web Engineering (2008)Google Scholar
  9. 9.
    O’Connor, M., Shankar, R., Parrish, D., Das, A.: Knowledge-level querying of temporal patterns in clinical research systems. In: Proc. of the 12th World Congress on Health (Medical) Informatics (2007)Google Scholar
  10. 10.
    Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Dordrecht (1995)zbMATHGoogle Scholar
  11. 11.
    Campbell, C.E., Eisenberg, A., Melton, J.: Xml schema. Technical report, W3C RecommendationGoogle Scholar
  12. 12.
    Völkel, M., Enguix, C.F., Kruk, S.R., Zhdanova, A.V., Stevens, R., Sure, Y.: Semversion - versioning RDF and ontologies. Technical report, Institute AIFB, University of Karlsruhe (2005)Google Scholar
  13. 13.
    Hobbs, J.R., Pan, F.: Time ontology in OWL. Technical report, W3C Working Draft (2005)Google Scholar
  14. 14.
    Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web Semantics 3(3) (2005)Google Scholar
  15. 15.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11) (1983)Google Scholar
  16. 16.
    Pugliese, A., Udrea, O., Subrahmanian, V.S.: Scaling RDF with time. In: Proc. of the 17th Int’l. World Wide Web Conference (2008)Google Scholar
  17. 17.
    Pan, D.: A tutorial on mpeg/audio compression. IEEE MultiMedia 2(2) (1995)Google Scholar
  18. 18.
    Elmasri, R., Wuu, G., Kim, Y.: The time index: An access structure for temporal data. In: Proc. of the 16th Int’l. Conference on Very Large Data Bases (1990)Google Scholar
  19. 19.
    Kiefer, C., Bernstein, A., Tappolet, J.: Analyzing software with iSPARQL. In: Proc. of the 3rd Int’l. Workshop on Semantic Web Enabled Software Engineering. Springer, Heidelberg (2007)Google Scholar
  20. 20.
    Kiefer, C., Bernstein, A., Tappolet, J.: Mining Software Repositories with iSPARQL and a Software Evolution Ontology. In: Proc. of the 2007 Int’l. Workshop on Mining Software Repositories. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  21. 21.
    Bizer, C., Cyganiak, R., Watkins, R.: NG4J - Named Graphs API for Jena (Poster). In: Proc. of the 2nd European Semantic Web Conference (2005)Google Scholar
  22. 22.
    Carroll, J.J., Dickinson, I., Dollin, C., Seaborne, A., Wilkinson, K., Reynolds, D.: Jena: Implementing the semantic web recommendations (2004)Google Scholar
  23. 23.
    Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science. Elsevier, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jonas Tappolet
    • 1
  • Abraham Bernstein
    • 1
  1. 1.University of ZurichSwitzerland

Personalised recommendations