Towards the Big Picture: Enriching 3D Models with Information Visualisation and Vice Versa

  • Michael Sedlmair
  • Kerstin Ruhland
  • Fabian Hennecke
  • Andreas Butz
  • Susan Bioletti
  • Carol O’Sullivan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5531)

Abstract

Most information visualisation methods are based on abstract visual representations without any concrete manifestation in the “real world”. However, a variety of abstract datasets can indeed be related to, and hence enriched by, real-world aspects. In these cases an additional virtual representation of the 3D object can help to gain a better insight into the connection between abstract and real-world issues. We demonstrate this approach with two prototype systems that combine information visualisation with 3D models in multiple coordinated views. The first prototype involves the visualisation of in-car communication traces. The 3D model of the car serves as one view among several and provides the user with information about the car’s activities. LibViz, our second prototype, is based on a full screen 3D representation of a library building. Measured data is visualised in overlaid, semi-transparent windows to allow the user interpretation of the data in its spatial context of the library’s 3D model. Based on the two prototypes, we identify the benefits and drawbacks of the approach, investigate aspects of coordination between the 3D model and the abstract visualisations, and discuss principals for a general approach.

Keywords

Information Visualisation 3D Models Multiple Coordinated Views 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldonado, M., Woodruff, A., Kuchinsky, A.: Guidelines for using multiple views in information visualization. In: Proceedings of the working conference on Advanced visual interfaces, pp. 110–119. ACM Press, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Butkiewicz, T., Chang, R., Wartell, Z., Ribarsky, W.: Visual Analysis and Semantic Exploration of Urban LIDAR Change Detection. In: Computer Graphics Forum, vol. 27, pp. 903–910. Blackwell Publishing, Malden (2008)Google Scholar
  3. 3.
    Card, S., Shneiderman, B., Mackinlay, J.: Readings in information visualization. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  4. 4.
    Goel, A., Baker, C., Shaffer, C., Grossman, B., Mason, W., Watson, L., Haftka, R.: VizCraft: A Problem-Solving Environment for Aircraft Configuration Design. Computing in Science and Engineering, 56–66 (2001)Google Scholar
  5. 5.
    Gresh, D., Rogowitz, B., Winslow, R., Scollan, D., Yung, C.: WEAVE: a system for visually linking 3-D and statistical visualizations, applied to cardiac simulation and measurement data. In: Proceedings of the conference on Visualization 2000, pp. 489–492. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  6. 6.
    Husøy, K., Skourup, C.: 3d visualization of integrated process information. In: NordiCHI, pp. 497–498 (2006)Google Scholar
  7. 7.
    Jern, M., Johansson, S., Johansson, J., Franzen, J.: The GAV Toolkit for Multiple Linked Views. In: Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization, 2007. CMV 2007, pp. 85–97 (2007)Google Scholar
  8. 8.
    Keim, D.: Information Visualization and Visual Data Mining. IEEE Transactions on Visualization and Computer Graphics, 1–8 (2002)Google Scholar
  9. 9.
    Kosara, R., Sahling, G., Hauser, H.: Linking scientific and information visualization with interactive 3D scatterplots. In: Proc. WSCG Short Communication Papers, pp. 133–140 (2004)Google Scholar
  10. 10.
    Maple, C., Manton, R., Jacobs, H.: The use of multiple co-ordinated views in three-dimensional virtual environments, vol. IV, pp. 778–784 (2004)Google Scholar
  11. 11.
    North, C., Shneiderman, B.: Snap-together visualization: a user interface for coordinating visualizations via relational schemata. In: Proceedings of the working conference on Advanced visual interfaces, pp. 128–135. ACM, New York (2000)CrossRefGoogle Scholar
  12. 12.
    North, C., Shneiderman, B., Plaisant, C.: Visual Information Seeking in Digital Image Libraries: The Visible Human Explorer. Information in Images (1997)Google Scholar
  13. 13.
    Plaisant, C.: The challenge of information visualization evaluation. In: Proceedings of the working conference on Advanced visual interfaces, pp. 109–116. ACM, New York (2004)CrossRefGoogle Scholar
  14. 14.
    Rhyne, T.: Does the Difference between Information and Scientific Visualization Really Matter? IEEE Computer Graphics and Aplications, 6–8 (2003)Google Scholar
  15. 15.
    Rhyne, T., Tory, M., Munzner, T., Ward, M., Johnson, C., Laidlaw, D.: Information and Scientific Visualization: Separate but Equal or Happy Together at Last. In: Proceedings of the 14th IEEE Visualization 2003 (VIS 2003). IEEE Computer Society, Washington (2003)Google Scholar
  16. 16.
    Roth, S., Lucas, P., Senn, J., Gomberg, C., Burks, M., Stroffolino, P., Kolojejchick, J., Dunmire, C.: Visage: a user interface environment for exploring information. In: Proceedings of Information Visualization, pp. 3–12 (1996)Google Scholar
  17. 17.
    Ruhland, K., Bioletti, S., Sedlmair, M., O’Sullivan, C.: Libviz: Data visualisation of the old library. In: Proceedings of the 14th International Conference on Virtual Systems and Multimedia dedicated on Digital Heritage (October 2008)Google Scholar
  18. 18.
    Sedlmair, M., Hintermaier, W., Stocker, K., Büring, T., Butz, A.: A dual-view visualization of in-car communication processes. In: Proceedings of the 12th International Conference on Information Visualization (July 2008)Google Scholar
  19. 19.
    Sedlmair, M., Kunze, B., Hintermaier, W., Butz, A.: User-centered Development of a Visual Exploration System for In-Car Communication. In: 9th International Symposium on Smart Graphics, SG 2009, Proceedings, Salamanca, Spain, May 28-30 (2009)Google Scholar
  20. 20.
    Tory, M., Möller, T.: Human factors in visualization research. IEEE Transactions on Visualization and Computer Graphics 10, 72–84 (2004)CrossRefGoogle Scholar
  21. 21.
    van Wijk, J., van Selow, E.: Cluster and calendar based visualization of time series data. In: Proceedings of the 1999 IEEE Symposium on Information Visualization, p. 4. IEEE Computer Society, Washington (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Sedlmair
    • 1
  • Kerstin Ruhland
    • 2
    • 4
  • Fabian Hennecke
    • 1
  • Andreas Butz
    • 2
  • Susan Bioletti
    • 4
  • Carol O’Sullivan
    • 3
  1. 1.BMW Group Research and TechnologyMunichGermany
  2. 2.Media Informatics GroupUniversity of MunichGermany
  3. 3.Preservation and Conservation DepartmentTrinity College DublinIreland
  4. 4.Graphics Vision and Visualisation GroupTrinity College DublinIreland

Personalised recommendations