Advertisement

A Survey on Approximation Algorithms for Scheduling with Machine Unavailability

  • Florian Diedrich
  • Klaus Jansen
  • Ulrich M. Schwarz
  • Denis Trystram
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5515)

Abstract

In this chapter we present recent contributions in the field of sequential job scheduling on network machines which work in parallel; these are subject to temporary unavailability. This unavailability can be either unforeseeable (online models) or known a priori (offline models). For the online models we are mainly interested in preemptive schedules for problem formulations where the machine unavailability is given by a probabilistic model; objectives of interest here are the sum of completion times and the makespan. Here, the non-preemptive case is essentially intractable. For the offline models we are interested in non-preemptive schedules where we consider the makespan objective; we present approximation algorithms which are complemented by suitable inapproximability results. Here, the preemptive model is polynomial-time solvable for large classes of settings.

Keywords

Approximation Algorithm Completion Time Knapsack Problem Competitive Ratio Online Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adiri, I., Bruno, J.L., Frostig, E., Kan, A.H.G.R.: Single machine flow-time scheduling with a single breakdown. Acta Inf. 26(7), 679–696 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Afrati, F.N., Bampis, E., Chekuri, C., Karger, D.R., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted completion time with release dates. In: FOCS, pp. 32–44 (1999)Google Scholar
  3. 3.
    Albers, S., Schmidt, G.: Scheduling with unexpected machine breakdowns. Disc. App. Math. 110(2-3), 85–99 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anderson, D.P., et al.: Seti@home, http://setiathome.berkeley.edu/
  5. 5.
    Baker, D., et al.: Rosetta@home protein folding, design and docking, http://boinc.bakerlab.org/rosetta/
  6. 6.
    Berman, F., et al.: World community grid, http://www.worldcommunitygrid.org/
  7. 7.
    Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. Technical report, Technische Universität Graz (1998)Google Scholar
  8. 8.
    Caprara, A., Kellerer, H., Pferschy, U.: A PTAS for the multiple subset sum problem with different knapsack capacities. Inf. Process. Lett. 73(3-4), 111–118 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple subset sum. J. Heuristics 9(2), 99–111 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cochand, M., de Werra, D., Slowinski, R.: Preemptive scheduling with staircase and piecewise linear resource availability. Methods and Models of Op. Res. 33, 297–313 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Crutchfield, C.Y., Dzunic, Z., Fineman, J.T., Karger, D.R., Scott, J.H.: Improved approximations for multiprecessor scheduling under uncertainty. In: Proceedings of SPAA (2008) (to appear)Google Scholar
  13. 13.
    Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi, R.: Approximation algorithms for the multiple knapsack problem with assignment restrictions. J. Comb. Optim. 4(2), 171–186 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    de Werra, D.: On the two-phase method for preemptive scheduling. Eur. J. Operational Res. 37, 227–235 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Diedrich, F., Jansen, K.: Improved approximation algorithms for scheduling with fixed jobs. In: Proc. 20th ACM-SIAM Symposium on Discrete Algorithms (2009) (to appear)Google Scholar
  16. 16.
    Diedrich, F., Jansen, K., Pascual, F., Trystram, D.: Approximation algorithms for scheduling with reservations. (unpublished Manuscript)Google Scholar
  17. 17.
    Diedrich, F., Jansen, K., Pascual, F., Trystram, D.: Approximation algorithms for scheduling with reservations. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2007. LNCS, vol. 4873, pp. 297–307. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Eyraud-Dubois, L., Mounié, G., Trystram, D.: Analysis of scheduling algorithms with reservations. In: IPDPS, pp. 1–8. IEEE, Los Alamitos (2007)Google Scholar
  19. 19.
    Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combinatorica 1(4), 349–355 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Garey, M.R., Johnson, D.S.: “strong” NP-completeness results: Motivation, examples, and implications. J. ACM 25(3), 499–508 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  22. 22.
    Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: Off-line and on-line algorithms. In: SODA, pp. 142–151 (1996)Google Scholar
  23. 23.
    Hochbaum, D. (ed.): Approximation Algorithms for NP-hard Problems. PWS Publishing Company (1996)Google Scholar
  24. 24.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hwang, H.-C., Lee, K., Chang, S.Y.: The effect of machine availability on the worst-case performance of LPT. Disc. App. Math. 148(1), 49–61 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jansen, K.: Parameterized approximation scheme for the multiple knapsack problem. In: Proc. 20th ACM-SIAM Symposium on Discrete Algorithms (2009) (to appear)Google Scholar
  29. 29.
    Kacem, I.: Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval. J. Comb. Optim. (2007)Google Scholar
  30. 30.
    Kacem, I.: Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval. Computers & Industrial Engineering 54(3), 401–410 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kacem, I., Chu, C., Souissi, A.: Single-machine scheduling with an availability constraint to minimize the weighted sum of the completion times. Computers & OR 35(3), 827–844 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kalyanasundaram, B., Pruhs, K.: Fault-tolerant scheduling. SIAM Journal on Computation 34(3), 697–719 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kasap, N., Aytug, H., Paul, A.: Minimizing makespan on a single machine subject to random breakdowns. Oper. Res. Lett. 34(1), 29–36 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kawaguchi, T., Kyan, S.: Worst case bound of an LRF schedule for the mean weighted flow-time problem. SIAM Journal on Computation 15(4), 1119–1129 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kellerer, H.: A polynomial time approximation scheme for the multiple knapsack problem. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 51–62. Springer, Heidelberg (1999)Google Scholar
  36. 36.
    Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G.: An efficient fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci. 66(2), 349–370 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kellerer, H., Pferschy, U.: A new fully polynomial time approximation scheme for the knapsack problem. J. Comb. Optim. 3(1), 59–71 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  39. 39.
    Kenyon, C., Rémila, E.: A near-optimal solution to a two dimensional cutting stock problem. Math. Oper. Res. 25, 645–656 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lawler, E.L.: Fast approximation algorithms for knapsack problems. Math. Oper. Res. 4(4), 339–356 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lee, C.-Y.: Parallel machines scheduling with non-simultaneous machine available time. Disc. App. Math. 30, 53–61 (1991)CrossRefzbMATHGoogle Scholar
  42. 42.
    Lee, C.-Y.: Machine scheduling with an availability constraint. J. Global Optimization, Special Issue on Optimization of Scheduling Applications 9, 363–384 (1996)MathSciNetGoogle Scholar
  43. 43.
    Lee, C.-Y., He, Y., Tang, G.: A note on parallel machine scheduling with non-simultaneous machine available time. Disc. App. Math. 100(1-2), 133–135 (2000)CrossRefzbMATHGoogle Scholar
  44. 44.
    Lee, C.-Y., Yu, G.: Parallel-machine scheduling under potential disruption. Opt. Lett. 2(1), 27–37 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Leung, J.Y.-T. (ed.): Handbook of Scheduling. Chapman & Hall, Boca Raton (2004)zbMATHGoogle Scholar
  46. 46.
    Li, W., Cao, J.: Stochastic scheduling on a single machine subject to multiple breakdowns according to different probabilities. Oper. Res. Lett. 18(2), 81–91 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Liao, C.-J., Shyur, D.-L., Lin, C.-H.: Makespan minimization for two parallel machines with an availability constraint. Eur. J. Operational Res. 160, 445–456 (2003)CrossRefzbMATHGoogle Scholar
  48. 48.
    Liu, Z., Sanlaville, E.: Preemptive scheduling with variable profile, precedence constraints and due dates. Disc. App. Math. 58(3), 253–280 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990)zbMATHGoogle Scholar
  50. 50.
    McNaughton, R.: Scheudling with deadlines and loss functions. Mgt. Science 6, 1–12 (1959)CrossRefzbMATHGoogle Scholar
  51. 51.
    Megow, N., Vredeveld, T.: Approximation in preemptive stochastic online scheduling. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 516–527. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  52. 52.
    Mellouli, R., Sadfi, C., Chu, C., Kacem, I.: Identical parallel-machine scheduling under availability constraints to minimize the sum of completion times. Eur. J. Operational Res. (2008)Google Scholar
  53. 53.
    Nurmi, D., Brevik, J., Wolski, R.: Modeling machine availability in enterprise and wide-area distributed computing environments. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 432–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  54. 54.
    Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  55. 55.
    Sadfi, C., Penz, B., Rapine, C., Błazewicz, J., Formanowicz, P.: An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints. Eur. J. Operational Res. 161(1), 3–10 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Sahni, S.: Algorithms for scheduling independent tasks. J. ACM 23(1), 116–127 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Sanlaville, E.: Nearly on line scheduling of preemptive independent tasks. Disc. App. Math. 57(2-3), 229–241 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Scharbrodt, M., Steger, A., Weisser, H.: Approximability of scheduling with fixed jobs. J. Scheduling 2, 267–284 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Schwarz, U.M.: Scheduling related machines with failures (unpublished manuscript)Google Scholar
  60. 60.
    Schwarz, U.M.: Online scheduling on semi-related machines. Information Processing Letters 108(1), 38–40 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Schwarz, U.M., Diedrich, F.: Scheduling algorithms for random machine profiles (unpublished manuscript)Google Scholar
  62. 62.
    Schwarz, U.M., Diedrich, F.: A framework for scheduling with online availability. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 205–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  63. 63.
    Woltman, G., et al.: The great internet mersenne prime search, http://www.mersenne.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Diedrich
    • 1
  • Klaus Jansen
    • 1
  • Ulrich M. Schwarz
    • 1
  • Denis Trystram
    • 2
  1. 1.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany
  2. 2.LIG – Grenoble UniversityMontbonnot Saint-MartinFrance

Personalised recommendations