Algorithms and Simulation Methods for Topology-Aware Sensor Networks

  • Alexander Kröller
  • Dennis Pfisterer
  • Sándor P. Fekete
  • Stefan Fischer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5515)


This chapter presents a number of different aspects related to a particular kind of large and complex networks: A Wireless Sensor Network (WSN) consists of a large number of nodes that individually have limited computing power and information; their interaction is strictly local, but their task is to build global structures and pursue global objectives.

Dealing with WSNs requires a mixture of theory and practice, i.e., a combination of algorithmic foundations with simulations and experiments that has been the subject of our project SwarmNet. In the first part, we describe a number of fundamental algorithmic issues: boundary recognition without node coordinates, clustering, routing, and energy-constrained flows. The second part deals with the simulation of large-scale WSNs; we describe the most important challenges and how they can be tackled with our network simulator Shawn.


Sensor Network Sensor Node Wireless Sensor Network Medial Axis Transmission Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buschmann, C., Fekete, S.P., Fischer, S., Kröller, A., Pfisterer, D.: Koordinatenfreies Lokationsbewusstsein. IT- Information Technology 47, 70–78 (2005)Google Scholar
  2. 2.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sensor networks for habitat monitoring. In: ACM International Workshop on Wireless Sensor Networks and Applications (WSNA 2002), Atlanta, GA (2002)Google Scholar
  3. 3.
    Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large scale habitat monitoring application. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys 2004), pp. 214–226. ACM Press, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Zhang, P., Sadler, C.M., Lyon, S.A., Martonosi, M.: Hardware design experiences in ZebraNet. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys 2004), pp. 227–238. ACM Press, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Estrin, D., Govindan, R., Heidemann, J.: Embedding the Internet: Introduction. Commun. ACM 43(5), 38–41 (2000)CrossRefGoogle Scholar
  6. 6.
    Kumar, V.: Sensor: the atomic computing particle. SIGMOD Rec. 32(4), 16–21 (2003)CrossRefGoogle Scholar
  7. 7.
    Basu, A., Gao, J., Mitchell, J.S., Sabhnani, G.: Distributed localization using noisy distance and angle information. In: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC 2006), pp. 262–273. ACM Press, New York (2006)CrossRefGoogle Scholar
  8. 8.
    Wagner, D., Wattenhofer, R. (eds.): Algorithms for Sensor and Ad Hoc Networks. LNCS, vol. 4621. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Fekete, S.P., Kröller, A., Pfisterer, D., Fischer, S., Buschmann, C.: Neighborhood-based topology recognition in sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 123–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fekete, S.P., Kaufmann, M., Kröller, A., Zweig, K.A.: A new approach for boundary recognition in geometric sensor networks. In: Proceedings of the 17th Canadian Conference on Computational Geometry (CCCG 2005), pp. 82–85 (2005)Google Scholar
  11. 11.
    Kröller, A., Fekete, S.P., Pfisterer, D., Fischer, S.: Deterministic boundary recognition and topology extraction for large sensor networks. In: Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 1000–1009 (2006)Google Scholar
  12. 12.
    Choi, H.I., Choi, S.W., Moon, H.P.: Mathematical theory of medial axis transform. Pacific Journal of Mathematics 181, 57–88 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sherbrooke, E.C., Patrikalakis, N.M., Wolter, F.E.: Differential and topological properties of medial axis transforms. Graphical Models and Image Processing 58(6), 574–592 (1996)CrossRefGoogle Scholar
  14. 14.
    Kröller, A.: Algorithms for Topology-Aware Sensor Networks. Ph.D thesis, Braunschweig Institute of Technology (2008)Google Scholar
  15. 15.
    Förster, K.T.: Clusterbasierte Objektüberwachung in drahtlosen Sensornetzwerken: Lokal optimale Wege in der Ebene und ihre Anwendung in Sensornetzwerken. Diploma thesis, Braunschweig Institute of Technology (2007)Google Scholar
  16. 16.
    Fekete, S.P., Förster, K.T., Kröller, A.: Local routing in geometric cluster graphs (2009)Google Scholar
  17. 17.
    Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fekete, S.P., Hall, A., Köhler, E., Kröller, A.: The maximum energy-constrained dynamic flow problem. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 114–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. In: Proc. FOCS, p. 300 (1998)Google Scholar
  20. 20.
    University of Southern California, Information Sciences Institute (ISI): Ns-2: Network simulator-2 (1995),
  21. 21.
    Varga, A.: OMNeT++: Objective modular network testbed in C++ (2007),
  22. 22.
    Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable simulation of entire TinyOS applications. In: Proceedings of the First ACM Conference on Embedded Networked Sensor Systems, SenSys 2003 (2003),
  23. 23.
    Szymanski, B.K., Chen, G., Branch, J.W., Zhu, L.: SENSE: Sensor network simulator and emulator (2007),
  24. 24.
    Kröller, A., Pfisterer, D., Buschmann, C., Fekete, S.P., Fischer, S.: Shawn: A new approach to simulating wireless sensor networks. In: Design, Analysis, and Simulation of Distributed Systems 2005 (DASD 2005), pp. 117–124 (2005)Google Scholar
  25. 25.
    Pfisterer, D., Fischer, S., Kröller, A., Fekete, S.: Shawn: Ein alternativer Ansatz zur Simulation von Sensornetzwerken. Technical report, 4. Fachgespräch Drahtlose Sensornetze der GI/ITG-Fachgruppe Kommunikation und Verteilte Systeme (2005)Google Scholar
  26. 26.
    Fekete, S.P., Kröller, A., Fischer, S., Pfisterer, D.: Shawn: The fast, highly customizable sensor network simulator. In: Proceedings of the Fourth International Conference on Networked Sensing Systems, INSS 2007 (2007)Google Scholar
  27. 27.
    Zhou, G., He, T., Krishnamurthy, S., Stankovic, J.A.: Impact of radio irregularity on wireless sensor networks. In: MobiSys 2004: Proceedings of the 2nd international conference on Mobile systems, applications, and services, pp. 125–138 (2004)Google Scholar
  28. 28.
    Zhou, G., He, T., Krishnamurthy, S., Stankovic, J.A.: Models and solutions for radio irregularity in wireless sensor networks. ACM Trans. Sen. Netw. 2(2), 221–262 (2006)CrossRefGoogle Scholar
  29. 29.
    Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and Design, 4th edn. Addison Wesley, Reading (2005)zbMATHGoogle Scholar
  30. 30.
    Tanenbaum, A.S., Steen, M.V.: Distributed Systems: Principles and Paradigms. Prentice Hall PTR, Englewood Cliffs (2001)zbMATHGoogle Scholar
  31. 31.
    Fischer, S., Luttenberger, N., Buschmann, C., Koberstein, J.: SWARMS: SoftWare Architecture for Radio-based Mobile Self-organizing Systems, DFG SPP 1140 (2002),
  32. 32.
    Fekete, S.P., Fischer, S., Kröller, A., Pfisterer, D.: SwarmNet: Algorithmen und Protokolle für Vernetzung und Betrieb großer Schwärme autonomer Kleinstprozessoren, DFG SPP 1126 (2003),
  33. 33.
    Spirakis, P., et al.: Foundations of Adaptive Networked Societies of Tiny Artefacts (FRONTS), Research Academic Computer Technology Institute, 7th Framework Programme on Research, Technological Development and Demonstration (2007)Google Scholar
  34. 34.
    Fischer, S., et al.: Wireless sensornet test beds (WISEBED), Universität zu Lübeck, 7th Framework Programme on Research, Technological Development and Demonstration (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexander Kröller
    • 1
  • Dennis Pfisterer
    • 2
  • Sándor P. Fekete
    • 1
  • Stefan Fischer
    • 2
  1. 1.Algorithms GroupBraunschweig Institute of TechnologyGermany
  2. 2.Institute of TelematicsUniversity of LübeckGermany

Personalised recommendations