Using BCI2000 in BCI Research

  • Jürgen Mellinger
  • Gerwin Schalk
Part of the The Frontiers Collection book series (FRONTCOLL)


BCI2000 is a general-purpose system for brain–computer interface (BCI) research. It can also be used for data acquisition, stimulus presentation, and brain monitoring applications [18,27]. The mission of the BCI2000 project is to facilitate research and applications in these areas. BCI2000 has been in development since 2000 in a collaboration between the Wadsworth Center of the New York State Department of Health in Albany, New York, and the Institute of Medical Psychology and Behavioral Neurobiology at the University of Tübingen, Germany. Many other individuals at different institutions world-wide have contributed to this project.



BCI2000 has been in development since 2000. Since the project’s inception, Gerwin Schalk has been responsible for the direction and implementation of the project. Dennis McFarland and Thilo Hinterberger contributed greatly to the initial system design and its implementation, and Drs. Wolpaw and Birbaumer provided support and useful advice in earlier stages of this project. Since 2002, Jürgen Mellinger has been responsible for software design and architecture. Since 2004, Adam Wilson and Peter Brunner have contributed system components and much needed testing. The following individuals or parties have also contributed to the development of BCI2000 (in alphabetical order):

Erik Aarnoutse, Brendan Allison, Maria Laura Blefari, Simona Bufalari, Bob Cardillo, Febo Cincotti, Joshua Fialkoff, Emanuele Fiorilla, Dario Gaetano, g.tecTM, Sebastian Halder, Jeremy Hill, Jenny Hizver, Sam Inverso, Vaishali Kamat, Dean Krusienski, Marco Mattiocco, Griffin “The Geek” Milsap, Melody M. Moore-Jackson, Yvan Pearson-Lecours, Christian Puzicha, Thomas Schreiner, Chintan Shah, Mark Span, Chris Veigl, Janki Vora, Shi Dong Zheng.

Initial development of BCI2000 has been sponsored by an NIH Bioengineering Research Partnership grant (EB00856) to Jonathan Wolpaw. Current development is sponsored by a NIH R01 grant (EB006356) to Gerwin Schalk.


  1. 1.
    B.Z. Allison, D.J. McFarland, G. Schalk, S.D. Zheng, M.M. Jackson, and J.R. Wolpaw, Towards an independent brain-computer interface using steady state visual evoked potentials. Clin Neurophysiol, 119(2), 399–408, Feb (2008).CrossRefPubMedGoogle Scholar
  2. 2.
    C.J. Bell, P. Shenoy, R. Chalodhorn, and R.P. Rao, Control of a humanoid robot by a noninvasive brain-computer interface in humans. J Neural Eng, 5(2), 214–220, Jun (2008).CrossRefPubMedGoogle Scholar
  3. 3.
    P. Brunner, A.L. Ritaccio, T.M. Lynch, J.F. Emrich, J.A. Wilson, J.C. Williams, E.J. Aarnoutse, N.F. Ramsey, E.C. Leuthardt, H. Bischof, and G Schalk. A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav, 15(3), 278–286, July (2009).Google Scholar
  4. 4.
    E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, and N. Birbaumer, Think to move: A neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke, 39(3), 910–917, Mar (2008).CrossRefPubMedGoogle Scholar
  5. 5.
    A.F. Cabrera and K. Dremstrup, Auditory and spatial navigation imagery in brain-computer interface using optimized wavelets. J Neurosci Methods, 174(1), 135–146, Sep (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    F. Cincotti, D. Mattia, F. Aloise, S. Bufalari, L. Astolfi, F. De Vico Fallani, A. Tocci, L. Bianchi, M.G. Marciani, S. Gao, J. Millan, and F. Babiloni, High-resolution EEG techniques for brain-computer interface applications. J Neurosci Methods, 167(1), 31–42, Jan (2008).CrossRefPubMedGoogle Scholar
  7. 7.
    F. Cincotti, D. Mattia, F. Aloise, S. Bufalari, G. Schalk, G. Oriolo, A. Cherubini, M.G. Marciani, and F. Babiloni, Non-invasive brain-computer interface system: towards its application as assistive technology. Brain Res Bull, 75(6), 796–803, Apr. (2008).CrossRefPubMedGoogle Scholar
  8. 8.
    A. Delorme and S. Makeig, EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 134(1), 9–21, (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    E.A. Felton, J.A. Wilson, J.C. Williams, and P.C. Garell, Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. report of four cases. J Neurosurg, 106(3), 495–500, Mar (2007).CrossRefPubMedGoogle Scholar
  10. 10.
    B. Kemp, A. Värri, A.C. Rosa, K.D. Nielsen, and J. Gade, A simple format for exchange of digitized polygraphic recordings. Electroenceph Clin Neurophysiol, 82, 391–393, (1992).CrossRefPubMedGoogle Scholar
  11. 11.
    A. Kübler, F. Nijboer, J. Mellinger, T.M. Vaughan, H. Pawelzik, G. Schalk, D.J. McFarland, N. Birbaumer, and J. R. Wolpaw, Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10), 1775–1777, May (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    E.C. Leuthardt, K. Miller, N.R. Anderson, G. Schalk, J. Dowling, J. Miller, D.W. Moran, and J.G. Ojemann, Electrocorticographic frequency alteration mapping: a clinical technique for mapping the motor cortex. Neurosurgery, 60(4 Suppl 2), 260–270, Apr (2007).PubMedGoogle Scholar
  13. 13.
    E.C. Leuthardt, K.J. Miller, G. Schalk, R.P. Rao, and J.G. Ojemann, Electrocorticography-based brain computer interface–the Seattle experience. IEEE Trans Neural Syst Rehabil Eng, 14(2), 194–198, Jun (2006).CrossRefPubMedGoogle Scholar
  14. 14.
    E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, and D.W. Moran, A brain-computer interface using electrocorticographic signals in humans. J Neural Eng, 1(2), 63–71, Jun (2004).CrossRefPubMedGoogle Scholar
  15. 15.
    S.G. Mason and G.E. Birch, A general framework for brain-computer interface design. IEEE Trans Neur Syst Rehabil Eng, 11(1), 70–85, (2003).CrossRefGoogle Scholar
  16. 16.
    D.J. McFarland, D.J. Krusienski, W.A. Sarnacki, and J.R. Wolpaw, Emulation of computer mouse control with a noninvasive brain-computer interface. J Neural Eng, 5(2), 101–110, Mar (2008).CrossRefPubMedGoogle Scholar
  17. 17.
    D.J. McFarland, W.A. Sarnacki, and J.R. Wolpaw, Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng, 7(3), 036007, June (2010).Google Scholar
  18. 18.
    J. Mellinger and G. Schalk, BCI2000: A general-purpose software platform for BCI. In: G. Dornhege, J.d.R. Millan, T. Hinterberger, D.J. McFarland, and K.R. Müller, (Eds), Toward brain-computer interfacing, MIT Press, Cambridge, MA, (2007).Google Scholar
  19. 19.
    J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, and A. Kübler. An MEG-based brain-computer interface (BCI). Neuroimage, 36(3), 581–593, Jul (2007).CrossRefPubMedGoogle Scholar
  20. 20.
    K.J. Miller, M. denNijs, P. Shenoy, J.W. Miller, R.P. Rao, and J.G. Ojemann, Real-time functional brain mapping using electrocorticography. Neuroimage, 37(2), 504–507, Aug (2007).CrossRefPubMedGoogle Scholar
  21. 21.
    K.J. Miller, E.C. Leuthardt, G. Schalk, R.P. Rao, N.R. Anderson, D.W. Moran, J.W. Miller, and J.G. Ojemann, Spectral changes in cortical surface potentials during motor movement. J Neurosci, 27(9), 2424–2432, Feb (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    F. Nijboer, E.W. Sellers, J. Mellinger, M.A. Jordan, T. Matuz, A. Furdea, S. Halder, U. Mochty, D.J. Krusienski, T.M. Vaughan, J.R. Wolpaw, N. Birbaumer, and A. Kübler, A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol, 119(8), 1909–1916, Aug (2008).CrossRefPubMedGoogle Scholar
  23. 23.
    A.S. Royer and B. He., Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms. J Neural Eng, 6(1), 16005–16005, Feb (2009).CrossRefGoogle Scholar
  24. 24.
    G. Schalk, P. Brunner, L.A. Gerhardt, H. Bischof, and J.R. Wolpaw, Brain-computer interfaces (bcis): detection instead of classification. J Neurosci Methods, 167(1), 51–62, Jan (2008).CrossRefPubMedGoogle Scholar
  25. 25.
    G. Schalk, J. Kubánek, K.J. Miller, N.R. Anderson, E.C. Leuthardt, J.G. Ojemann, D. Limbrick, D. Moran, L.A. Gerhardt, and J.R. Wolpaw, Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng, 4(3), 264–275, Sep (2007).CrossRefPubMedGoogle Scholar
  26. 26.
    G. Schalk, E.C. Leuthardt, P. Brunner, J.G. Ojemann, L.A. Gerhardt, and J.R. Wolpaw, Real-time detection of event-related brain activity. Neuroimage, 43(2), 245–249, Nov (2008).CrossRefPubMedGoogle Scholar
  27. 27.
    G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, and J.R. Wolpaw, BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng, 51, 1034–1043, (2004).CrossRefPubMedGoogle Scholar
  28. 28.
    G. Schalk, K.J. Miller, N.R. Anderson, J.A. Wilson, M.D. Smyth, J.G. Ojemann, D.W. Moran, J.R. Wolpaw, and E.C. Leuthardt, Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng, 5(1), 75–84, Mar 2008.CrossRefPubMedGoogle Scholar
  29. 29.
    A. Schlögl, GDF – A general dataformat for biosignals. ArXiv Comput Sci arXiv:cs/0608052v6 [cs.DL], August (2006).Google Scholar
  30. 30.
    A. Schlögl, G.R. Müller, R. Scherer, and G. Pfurtscheller, BioSig – an open source software package for biomedical signal processing. 2nd OpenECG Workshop, Berlin, 1–3 Apr (2004).Google Scholar
  31. 31.
    J.R. Stroop, Studies of interference in serial verbal reactions. J Exp Psych, 18(6), 643–662, Dec 1935.CrossRefGoogle Scholar
  32. 32.
    T.M. Vaughan, D.J. McFarland, G. Schalk, W.A. Sarnacki, D.J. Krusienski, E.W. Sellers, and J.R. Wolpaw, The Wadsworth BCI Research and Development Program: At home with BCI. IEEE Trans Neural Syst Rehabil Eng, 14(2), 229–233, Jun 2006.CrossRefPubMedGoogle Scholar
  33. 33.
    J.A. Wilson, E.A. Felton, P.C. Garell, G. Schalk, and J.C. Williams, ECoG factors underlying multimodal control of a brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 14(2), 246–250, Jun 2006.CrossRefPubMedGoogle Scholar
  34. 34.
    K.J. Wisneski, N. Anderson, G. Schalk, M. Smyth, D. Moran, and E.C. Leuthardt, Unique cortical physiology associated with ipsilateral hand movements and neuroprosthetic implications. Stroke, 39(12), 3351–3359, Dec 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan, Brain-computer interfaces for communication and control. Electroenceph Clin Neurophysiol, 113(6), 767–791, June 2002.Google Scholar
  36. 36.
    J.R. Wolpaw and D.J. McFarland., Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U S A, 101(51), 17849–17854, Dec 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    N. Yamawaki, C. Wilke, Z. Liu, and B. He, An enhanced time-frequency-spatial approach for motor imagery classification. IEEE Trans Neural Syst Rehabil Eng, 14(2), 250–254, Jun 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Medical Psychology and Behavioral NeurobiologyUniversity of TübingenTübingenGermany
  2. 2.Laboratory of Neural Injury and Repair, New York State Department of HealthWadsworth CenterAlbanyUSA

Personalised recommendations