Advertisement

From Coordination to Stochastic Models of QoS

  • Farhad Arbab
  • Tom Chothia
  • Rob van der Mei
  • Sun Meng
  • YoungJoo Moon
  • Chrétien Verhoef
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5521)

Abstract

Reo is a channel-based coordination model whose operational semantics is given by Constraint Automata (CA). Quantitative Constraint Automata extend CA (and hence, Reo) with quantitative models to capture such non-functional aspects of a system’s behaviour as delays, costs, resource needs and consumption, that depend on the internal details of the system. However, the performance of a system can crucially depend not only on its internal details, but also on how it is used in an environment, as determined for instance by the frequencies and distributions of the arrivals of I/O requests. In this paper we propose Quantitative Intentional Automata (QIA), an extension of CA that allow incorporating the influence of a system’s environment on its performance. Moreover, we show the translation of QIA into Continuous-Time Markov Chains (CTMCs), which allows us to apply existing CTMC tools and techniques for performance analysis of QIA and Reo circuits.

Keywords

Performance evaluation Coordination language Reo Markov Chains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eclipse Coordination Tools, http://reo.project.cwi.nl/
  2. 2.
    Probabilistic model checker, http://www.prismmodelchecker.org/
  3. 3.
    Arbab, F.: Reo: a channel-based coordination model for component composition. MSCS 14(3), 329–366 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component Connectors with QoS Guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 286–304. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.-J., Verhoef, C.: From Coordination to Stochastic Models of QoS. Technical report, CWIGoogle Scholar
  6. 6.
    Arbab, F., Rutten, J.J.M.M.: A Coinductive Calculus of Component Connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bernardo, M., Gorrieri, R.: Extended Markovian Process Algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Bernardo, M., Gorrieri, R.: A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time. Theor. Comput. Sci. 202(1-2), 1–54 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bonsangue, M., Clarke, D., Silva, A.: Automata for context-dependent connectors. In: COORDINATION 2009. LNCS, vol. 5521, pp. 183–202. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Calzarossa, M.C., Tucci, S. (eds.): Performance 2002. LNCS, vol. 2459. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Ching, W.-K., Ng, M.K.: Markov Chains: Models, Algorithms and Applications. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  14. 14.
    Chothia, T., Kleijn, J.: Q-Automata: Modelling the Resource Usage of Concurrent Components. Electr. Notes Theor. Comput. Sci. 175(2), 153–167 (2007)CrossRefGoogle Scholar
  15. 15.
    Costa, D.: Formal Models for Context Dependent Connectors for Distributed Software Components and Services. Ph.D thesis, Vrije Universiteit Amsterdam (2009)Google Scholar
  16. 16.
    Fernandes, P., Plateau, B., Stewart, W.J.: Efficient Descriptor-Vector Multiplications in Stochastic Automata Networks. J. ACM 45(3), 381–414 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Haverkort, B.R., Marie, R., Rubino, G., Trivedi, K.S. (eds.): Performability Modelling: Techniques and Tools. Wiley, Chichester (2001)zbMATHGoogle Scholar
  18. 18.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  20. 20.
    Meng, S., Arbab, F.: QoS-Driven Service Selection and Composition. In: ACSD, pp. 160–169. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  21. 21.
    Nicola, R.D., Ferrari, G.L., Montanari, U., Pugliese, R., Tuosto, E.: A Process Calculus for QoS-Aware Applications. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 33–48. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    O’Cinneide, C.: Characterization of phase-type distributions. Stochastic Models 6(1), 1–57 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Plateau, B., Stewart, W.J.: Stochastic automata networks: product forms and iterative solutions. Technical Report RR-2939, INRIAGoogle Scholar
  24. 24.
    Sahner, R.A., Trivedi, K.S., Puliafito, A.: Performance and reliability analysis of computer systems: an example-based approach using the SHARPE software package. Kluwer Academic Publishers, Norwell (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of stochastic automata networks. EOR 86(3), 503–525 (1995)zbMATHGoogle Scholar
  26. 26.
    Younes, H., Simmons, R.: Solving Generalized Semi-Markov Decision Processes using Continuous Phase-Type Distributions. In: Proceedings of the 19th National Conference on Artificial Intelligence, California, pp. 742–747. AAAI Press, Menlo Park (2004)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Farhad Arbab
    • 1
  • Tom Chothia
    • 2
  • Rob van der Mei
    • 1
    • 3
  • Sun Meng
    • 1
  • YoungJoo Moon
    • 1
  • Chrétien Verhoef
    • 1
  1. 1.Centrum Wiskunde & Informatica (CWI)AmsterdamThe Netherlands
  2. 2.School of Computer ScienceUniv. of BirminghamUnited Kingdom
  3. 3.Vrije Universiteit AmsterdamThe Netherlands

Personalised recommendations