Measurement and Simulation of Combustion Noise emitted from Swirl Burners

  • C. Bender
  • F. Zhang
  • P. Habisreuther
  • H. Büchner
  • H. Bockhorn


A major uncertaincy, when designing combustors is the influence of geometrical patterns of the design on the combustion noise generated. In order to determine the mechanisms and processes that influence the noise generation of flames with underlying swirling flows, a new burner has been designed, that offers the possibility to vary geometrical parameters. Experimental data (flow field, noise emission) have been determined for this burner. In addition, Large Eddy Simulations (LES) have been performed to study the isothermal and reacting flow of the burner. The results of the measurements show a distinct rise of the sound pressure level, obtained by changing the test setup from the isothermal to the flame configuration as well as by varying geometrical parameters, which is also resembled by the LES simulation results. A physical model has been developed from experiments and verified by the LES simulation, that explains the formation of coherent flow structures and allows to separate their contribution to the overall noise emission from ordinary turbulent noise sources. The computed isothermal and reacting flow fields have been discussed through flow visualization; the computed acoustic pressure has been compared with the experiment and it showed good agreement.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support by the German Research Council (DFG) through the Research Unit FOR 486 ”Combustion Noise”.


  1. [1]
    Bai T, Cheng, XC, Daniel BR, Jagoda JI, Zinn BT (1993) Vortex shredding and periodic combustion processes in a Rijke type pulse combustor, Combustion Science Technology, 94, 245-258CrossRefGoogle Scholar
  2. [2]
    Bamberger A (2004) Vortex sound of flutes observed with Particle Image Velocimetry. ICA conference, KyotoGoogle Scholar
  3. [3]
    Bender C, Büchner H (2005) Mechanismen der Lärmentstehung in freibrennenden und eingeschlossenen Drallflammen, VDI-Berichte: 22. Deutscher Flammentag-Verbrennung und Feuerungen, 1888, 311-317Google Scholar
  4. [4]
    Bender C, Büchner H 2005) Noise emissions from a premixed swirl combustor, Proceedings of Twelfth International Congress on Sound and Vibration (ICSV 12), CD-ROM.Google Scholar
  5. [5]
    Beer JM, Chigier NA (1972) Combustion aerodynamics, Applied Science Publisher, LondonGoogle Scholar
  6. [6]
    Brick H, Piscoya R, Ochmann M, Költzsch P (2005) Prediction of the Sound Radiated from Open Flames by Coupling a Large Eddy Simulation and a Kirchhoff-Method. Proc. Forum Acusticum, 85-89, BudapestGoogle Scholar
  7. [7]
    Bui TP, Schröder W, Meinke M (2007) Acoustic perturbation equations for reacting flows to compute combustion noise. International Journal of Aeroacoustics, volume 6, nr.4CrossRefGoogle Scholar
  8. [8]
    Bui TP, Meinke M, Schröder W (2004) A Hybrid Approach to Analyze the Acoustic Field Based on Aerothermodynamic Effects. Proc. Joint Congress CFA/DAGA’04, Strasbourg, France, 121-122Google Scholar
  9. [9]
    Büchner H (1992) Entstehung und theoretische Untersuchungen der Entstehungsmechanismen selbst-erregter Druckschwingungen in technischen Vormisch-Verbrennungssystemen, PhD Thesis, University of KarlsruheGoogle Scholar
  10. [10]
    Büchner H, Lohrmann M (2003) Coherent Flow Structures in Turbulent Swirl Flames as Drivers for Combustion Instabilities. Proc. Intern. Colloquium on Combustion and Noise ControlGoogle Scholar
  11. [11]
    Cabana M, Fortune V, Jordan P (2006) A look insight the Lighthill source term. 12th AIAA/CEAS Aeroacoustics Conference. Cambridge, MA, USA, AIAA-2006-2484Google Scholar
  12. [12]
    Catlin J B, Day W H, Goom K (1999) The Pratt & Whitney Industrial Gas Turbine Product Line, Proc. of Power Gen ConferenceGoogle Scholar
  13. [13]
    Colin O, Ducros F, Veynante D, Poinsot T (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids. 12, 7CrossRefGoogle Scholar
  14. [14]
    Duchamp de Lageneste L, Pitsch H (2001) Progress in large-eddy simulation of premixed and partially-premixed turbulent combustion. Center for Turbulence Research, Annual Research BriefsGoogle Scholar
  15. [15]
    Fröhlich J (2006) Large Eddy Simulation turbulenter Strömungen, ISBN-10 3-8351-0104-8Google Scholar
  16. [16]
    Gupta AK, Lilley DG, Syred N (1984) Swirl Flows, Abacus Press, Kent(U.K.)Google Scholar
  17. [17]
    Habisreuther P, Bender C, Petsch O, Büchner H, Bockhorn H (2004) Calculated and Measured Turbulent Noise in a Strongly Swirling Isothermal Jet, Proceedings Joint Congress CFA/DAGA, 1179-1180Google Scholar
  18. [18]
    Habisreuther P, Bender C, Petsch O, Buechner H, Bockhorn H (2006) Prediction of Pressure Oscillations in a Premixed Swirl Combustor Flow and Comparison to Measurements. Flow Turbulence and CombustionGoogle Scholar
  19. [19]
    Habisreuther P, Lischer T, Cai W, Krebs W, Zarzalis N (2007) Visualisation of statistically periodic coherent structures in turbulent flow using a phase locked averaging method. Progress in computational fluid dynamicsGoogle Scholar
  20. [20]
    Hermesmeyer, Prade, Gruschka, Schmitz, Hoffmann and Krebs(2002) V64.3A Gas Burner Natural Gas Burner Development, Proceedings of ASME Turbo ExpoGoogle Scholar
  21. [21]
    Keck O, Meier W, Stricker W, Aigner M (2002) Establishment of a confined swirling natural gas/air flame as standard flame: Temperature and species distribution from laser Raman measure-ments, Combustion Science Technology, 174(8), 117-151CrossRefGoogle Scholar
  22. [22]
    Kühlsheimer C, Büchner H (2002) Combustion Dynamics of Turbulent Swirling Flows, Combus-tion and Flame, 131 (1-2), 70-84CrossRefGoogle Scholar
  23. [23]
    Leuckel W, Fricker N(1976) The characteristics of swirl-stabilized natural gas flames. Part I: Dif-ferent flame types and their relation to flow and mixing patterns, J. Inst. Fuel, 49, 103-112Google Scholar
  24. [24]
    Lighthill M J (1952) On sound generated aerodynamically I. General Theory. Proc. R. Soc. A211, 564-587MathSciNetGoogle Scholar
  25. [25]
    Lohrmann M, Büchner H (2000) Periodische Störungen im turbulenten Strömungsfeld eines Vor-misch-Drallbrenners, Chem.-Ing. Technik 72, 512-515Google Scholar
  26. [26]
    Pitsch H, Duchamp de Lageneste L (2002) Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proceedings of the Combustion Institute, Volume 29Google Scholar
  27. [27]
    Roux S, Lartique G, Poinsot T, Meier U, Berat C (2005) Studies of Mean and Unsteady Flow in a Swirled Combustor using Experiments, Acoustic Analysis and Large Eddy Simulations. Combustion and Flame (141) S.40-54CrossRefGoogle Scholar
  28. [28]
    Schadow K, Gutmark E, Parr T, Parr K, Wilson K, Crump J (1989) Large-scale coherent structures as drivers of combustion instability, Combustion Science Technology, 64, 167-186CrossRefGoogle Scholar
  29. [29]
    Schmid H P, Habisreuther P, Leuckel W (1998) A Model for Calculating Heat Release in Premixed Turbulent Flames, Combustion and Flame 113, pp. 79-91CrossRefGoogle Scholar
  30. [30]
    Selle L, Lartigue G, Poinsot T, Kaufmann P, Krebs W, Veynante D (2002) Large-eddy simulation of turbulent combustion for gas turbines with reduced chemistry. Center for Turbulence Research, Proceedings of the Summer ProgramGoogle Scholar
  31. [31]
    Smagorinsky J (1963) General circulation experiments with the primitive equations I: The basic experiment. Mon. Weather Rev. 91, 99-164CrossRefGoogle Scholar
  32. [32]
    Wang P, Bai XS (2005) Large eddy simulation of turbulent premixed flames using level-set G-equation. Proceedings of the Combustion Institute 30, 583-591Google Scholar
  33. [33]
    Zhang F, Habisreuther P, Hettel M, Bockhorn H (2008) Modeling of a Premixed Swirl-stabilized Flame Using a Turbulent Flame Speed Closure Model in LES. Flow, Turbulence and Combustion, Accepted.Google Scholar
  34. [34]
    Ziegler G(1991) Entflammung magerer Methan/Luft-Gemische durch kurzzeitige Bogen- und Glimmentladung. PhD Thesis, University of StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. Bender
    • 1
  • F. Zhang
  • P. Habisreuther
  • H. Büchner
  • H. Bockhorn
  1. 1.Division of Combustion TechnologyUniversity of KarlsruheKarlsruheGermany

Personalised recommendations