Multi-level Algorithms for Modularity Clustering

  • Andreas Noack
  • Randolf Rotta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5526)


Modularity is a widely used quality measure for graph clusterings. Its exact maximization is prohibitively expensive for large graphs. Popular heuristics progressively merge clusters starting from singletons (coarsening), and optionally improve the resulting clustering by moving vertices between clusters (refinement). This paper experimentally compares existing and new heuristics of this type with respect to their effectiveness (achieved modularity) and runtime. For coarsening, it turns out that the most widely used criterion for merging clusters (modularity increase) is outperformed by other simple criteria, and that a recent multi-step algorithm is no improvement over simple single-step coarsening for these criteria. For refinement, a new multi-level algorithm produces significantly better clusterings than conventional single-level algorithms. A comparison with published benchmark results and algorithm implementations shows that combinations of coarsening and multi-level refinement are competitive with the best algorithms in the literature.


Reduction Factor Physical Review Edge Weight Community Detection Graph Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)CrossRefGoogle Scholar
  2. 2.
    Gaertler, M.: Clustering. In: Brandes, U., Erlebach, T. (eds.) Network Analysis: Methodological Foundations. LNCS, vol. 3418, pp. 178–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data Engineering 20(2), 172–188 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. The European Physical Journal B 66(3), 409–418 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Xu, G., Tsoka, S., Papageorgiou, L.G.: Finding community structures in complex networks using mixed integer optimisation. The European Physical Journal B 60(2), 231–239 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 066133 (2004)CrossRefGoogle Scholar
  8. 8.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)CrossRefGoogle Scholar
  9. 9.
    Danon, L., Díaz-Guilera, A., Arenas, A.: Effect of size heterogeneity on community identification in complex networks. Journal of Statistical Mechanics: Theory and Experiment, P11010 (2006)Google Scholar
  10. 10.
    Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks. Preprint arXiv:cs/0702048 (2007)Google Scholar
  11. 11.
    Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Physical Review E 77, 046112 (2008)CrossRefGoogle Scholar
  12. 12.
    Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  13. 13.
    Ye, Z., Hu, S., Yu, J.: Adaptive clustering algorithm for community detection in complex networks. Physical Review E 78(4), 046115 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. In: Proceedings of the ACM/IEEE Supercomputing Conference, SC 1995 (1995)Google Scholar
  15. 15.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Newman, M.E.J.: Analysis of weighted networks. Physical Review E 70, 056131 (2004)CrossRefGoogle Scholar
  17. 17.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74, 036104 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. Preprint arXiv:0812.4073 (2008)Google Scholar
  19. 19.
    Schuetz, P., Caflisch, A.: Multistep greedy algorithm identifies community structure in real-world and computer-generated networks. Physical Review E 78, 026112 (2008)CrossRefGoogle Scholar
  20. 20.
    Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Physical Review E 74, 016110 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Noack, A.: Modularity clustering is force-directed layout. Physical Review E 79, 026102 (2009)CrossRefGoogle Scholar
  22. 22.
    Medus, A., Acuña, G., Dorso, C.O.: Detection of community structures in networks via global optimization. Physica A 358(2-4), 593–604 (2005)CrossRefGoogle Scholar
  23. 23.
    Massen, C.P., Doye, J.P.K.: Identifying communities within energy landscapes. Physical Review E 71, 046101 (2005)CrossRefGoogle Scholar
  24. 24.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Physical Review E 72, 027104 (2005)CrossRefGoogle Scholar
  25. 25.
    Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49(2), 291–307 (1970)CrossRefzbMATHGoogle Scholar
  26. 26.
    Rotta, R.: A multi-level algorithm for modularity graph clustering. Master’s thesis, Brandenburg University of Technology (2008)Google Scholar
  27. 27.
    Djidjev, H.N.: A scalable multilevel algorithm for graph clustering and community structure detection. In: Aiello, W., Broder, A., Janssen, J., Milios, E.E. (eds.) WAW 2006. LNCS, vol. 4936, pp. 117–128. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10008 (2008)Google Scholar
  29. 29.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)CrossRefGoogle Scholar
  30. 30.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications 10(2), 191–218 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Pujol, J.M., Béjar, J., Delgado, J.: Clustering algorithm for determining community structure in large networks. Physical Review E 74, 016107 (2006)CrossRefGoogle Scholar
  32. 32.
    Donetti, L., Muñoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment, 10012 (2004)Google Scholar
  33. 33.
    Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New Journal of Physics 10, 053039 (2008)CrossRefGoogle Scholar
  34. 34.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003)CrossRefGoogle Scholar
  35. 35.
    Krebs, V.: A network of books about recent US politics sold by the online bookseller (2008),
  36. 36.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the 5th SIAM International Conference on Data Mining (SDM 2005), pp. 274–285. SIAM, Philadelphia (2005)CrossRefGoogle Scholar
  38. 38.
    Gleiser, P., Danon, L.: Community structure in jazz. Advances in Complex Systems 6(4), 565–573 (2003)CrossRefGoogle Scholar
  39. 39.
    Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68, 065103 (2003)CrossRefGoogle Scholar
  40. 40.
    Grossman, J.: The Erdös number project (2007),
  41. 41.
    Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Physical Review E 70, 056122 (2004)CrossRefGoogle Scholar
  42. 42.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences 98(2), 404–409 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Albert, R., Jeong, H., Barabási, A.L.: Diameter of the World-Wide Web. Nature 401(6749), 130–131 (1999)CrossRefGoogle Scholar
  44. 44.
    Csárdi, G., Nepusz, T.: The igraph software package for complex network research. Inter. Journal Complex Systems 1695 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andreas Noack
    • 1
  • Randolf Rotta
    • 1
  1. 1.Brandenburg University of TechnologyCottbusGermany

Personalised recommendations