Univariate Algebraic Kernel and Application to Arrangements

  • Sylvain Lazard
  • Luis Peñaranda
  • Elias Tsigaridas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5526)

Abstract

We present a cgal-based univariate algebraic kernel, which provides certified real-root isolation of univariate polynomials with integer coefficients and standard functionalities such as basic arithmetic operations, greatest common divisor (gcd) and square-free factorization, as well as comparison and sign evaluations of real algebraic numbers.

We compare our kernel with other comparable kernels, demonstrating the efficiency of our approach. Our experiments are performed on large data sets including polynomials of high degree (up to 2 000) and with very large coefficients (up to 25 000 bits per coefficient).

We also address the problem of computing arrangements of x-monotone polynomial curves. We apply our kernel to this problem and demonstrate its efficiency compared to previous solutions available in cgal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, J.: Quadratic interval refinement for real roots. In: International Symposium on Symbolic and Algebraic Computation (ISSAC), poster presentation (2006)Google Scholar
  2. 2.
    Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and Exact Algorithms for Curves and Surfaces. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 155–166. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Berberich, E., Hemmer, M., Karavelas, M., Teillaud, M.: Revision of the interface specification of algebaic kernel. Technical Report ACS-TR-243301-01, ACS European Project (2007)Google Scholar
  4. 4.
    Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
  5. 5.
    Collins, G., Johnson, J., Krandick, W.: Interval Arithmetic in Cylindrical Algebraic Decomposition. Journal of Symbolic Computation 34(2), 145–157 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    The Core library, http://cs.nyu.edu/exact/
  7. 7.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Edelman, A., Kostlan, E.: How zeros of a random polynomial are real? Bulletin of American Mathematical Society 32(1), 1–37 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–149. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Emiris, I., Hemmer, M., Karavelas, M., Limbach, S., Mourrain, B., Tsigaridas, E., Zafeirakopoulos, Z.: Cross-benchmarks for univariate algebraic kernels. Technical Report ACS-TR-363602-02, ACS European Project (2008)Google Scholar
  11. 11.
    Emiris, I.Z., Kakargias, A., Pion, S., Teillaud, M., Tsigaridas, E.P.: Towards and open curved kernel. In: Proc. 20th Annual ACM Symp. on Computational Geometry (SoCG), New York, USA, pp. 438–446 (2004)Google Scholar
  12. 12.
    Gmp, Gnu multiple precision arithmetic library, http://gmplib.org/
  13. 13.
    Hemmer, M., Limbach, S.: Benchmarks on a generic univariate algebraic kernel. Technical Report ACS-TR-243306-03, ACS European Project (2006)Google Scholar
  14. 14.
    Keyser, J., Culver, T., Manocha, D., Krishnan, S.: Efficient and exact manipulation of algebraic points and curves. Computer-Aided Design 32(11), 649–662 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Mourrain, B., Pavone, P., Trébuchet, P., Tsigaridas, E.P., Wintz, J.: Synaps, a library for dedicated applications in symbolic numeric computations. In: Stillman, M., Takayama, N., Verschelde, J. (eds.) IMA Volumes in Mathematics and its Applications, pp. 81–110. Springer, New York (2007), http://synaps.inria.fr Google Scholar
  16. 16.
    Mpfi, multiple precision interval arithmetic library, http://perso.ens-lyon.fr/nathalie.revol/software.html
  17. 17.
    Mpfr, library for multiple-precision floating-point computations, http://mpfr.org/
  18. 18.
    Rouillier, F., Zimmermann, Z.: Efficient isolation of polynomial’s real roots. J. of Computational and Applied Mathematics 162(1), 33–50 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rs, a software for real solving of algebraic systems. F. Rouillier, http://fgbrs.lip6.fr
  20. 20.
    Tsigaridas, E.P., Emiris, I.Z.: On the complexity of real root isolation using Continued Fractions. Theoretical Computer Science 392, 158–173 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Tsigaridas, E.P., Emiris, I.Z.: Real algebraic numbers and polynomial systems of small degree. Theoretical Computer Science 409(2), 186–199 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Wein, R., Fogel, E.: The new design of CGAL’s arrangement package. Technical report, Tel-Aviv University (2005)Google Scholar
  23. 23.
    Yap, C.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)MATHGoogle Scholar
  24. 24.
    Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 41, pp. 927–952. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sylvain Lazard
    • 1
  • Luis Peñaranda
    • 1
  • Elias Tsigaridas
    • 2
  1. 1.INRIA Nancy - Grand Est, LORIAFrance
  2. 2.INRIA Sophia-Antipolis - MéditerranéFrance

Personalised recommendations