Evaluating Between-Pathway Models with Expression Data

  • Benjamin J. Hescott
  • Mark D. M. Leiserson
  • Lenore J. Cowen
  • Donna K. Slonim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5541)

Abstract

Between-Pathway Models (BPMs) are network motifs consisting of pairs of putative redundant pathways. In this paper, we show how adding another source of high-throughput data, microarray gene expression data from knockout experiments, allows us to identify a compensatory functional relationship between genes from the two BPM pathways. We evaluate the quality of the BPMs from four different studies, and we describe how our methods might be extended to refine pathways.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology 23(5), 561–566 (2005) doi: 10.1038/nbt1096 PMID: 15877074CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ulitsky, I., Shamir, R.: Pathway redundancy and protein essentiality revealed in the s. cerevisiae interaction networks. Molecular Systems Biology 3(104) (2007) PMCID: PMC1865586Google Scholar
  3. 3.
    Ma, X., Tarone, A., Li, W.: Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS One 3(4), 1922 (2008) doi:10.1371/journal.pone.0001922 PMCID: PMC2275788CrossRefGoogle Scholar
  4. 4.
    Brady, A., Maxwell, K., Daniels, N., Cowen, L.: Fault tolerance in protein interaction networks: Stable bipartite subgraphs and redundant pathways. PLoS ONE (to appear)Google Scholar
  5. 5.
    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Ladner, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102(43), 15545–15550 (2005) PMCID: PMC1239896CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., Friend, S.H.: Functional discovery via a compendium of expression profiles. Cell 102(1), 109–126 (2000) doi: 10.1016/S0092-B674(00)00015-5 PMID: 10929718CrossRefPubMedGoogle Scholar
  7. 7.
    Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.: Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics 18, S233 (2002) PMID: 12169552CrossRefGoogle Scholar
  8. 8.
    Segal, E., Wang, H., Koller, D.: Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19(suppl. 1), 264–271 (2003) PMID: 12855469CrossRefGoogle Scholar
  9. 9.
    Ulitsky, I., Shamir, R.: Identification of functional modules using network topology and high-throughput data. BMC Systems Biology 1(8) (2007) PMCID: PMC1839897Google Scholar
  10. 10.
    Liu, M., Liberzon, A., Kong, S., Lai, W., Park, P.J., Kohane, I.S., Kasif, S.: Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genetics 3(6), e96 (2007) PMCID: PMC1904360CrossRefGoogle Scholar
  11. 11.
    Ulitsky, I., Karp, R., Shamir, R.: Detecting disease-specific dysregulated pathways via analysis of clinical expression profiles. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 347–359. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Paultauf, F., Kohlwein, S., Henry, S.: Regulation and compartmentalization of lipid synthesis in yeast. The Molecular and Cellular Biology of the yeast Saccharomyces: Gene Expression 2, 415–500 (1992)Google Scholar
  13. 13.
    Parks, L., Casey, W.: Physiological implications of sterol biosynthesis in yeast. Annual Review of Microbiology 49(1), 95–116 (1995) doi: 10.1146/annurev.mi.49.100195.000523 PMID: 8561481CrossRefPubMedGoogle Scholar
  14. 14.
    Lupetti, A., Danesi, R., Campa, M., Tacca, M.D., Kelly, S.: Molecular basis of resistance to azole antifungals. Trends in Molecular Medicine 8(2), 76–81 (2002) doi: 10.1016/S1471-4914(02)02280-3 PMID: 11815273CrossRefPubMedGoogle Scholar
  15. 15.
    Bhuiyan, M.S.A., Eckstein, J., Barbuch, R., Bard, M.: Synthetically lethal interactions involving loss of the yeast erg24: the sterol c-14 reductase gene. Lipids 42(1), 69–76 (2007) PMCID: PMC1847747CrossRefGoogle Scholar
  16. 16.
    Valachovic, M., Bareither, B., Bhuiyan, M.S.A., Eckstein, J., Barbuch, R., Balderes, D., Wilcox, L., Sturley, S., Dickson, R., Bard, M.: Cumulative mutations affecting sterol biosynthesis in the yeast saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid profiles. Genetics 173(4), 1893–1908 (2006) PMCID: PMC1569731CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Goto, S., Bono, H., Ogata, H., Fujibuchi, W., Nishioka, T., Sato, K., Kanehisa, M.: Organizing and computing metabolic pathway data in terms of binary relations. In: Pac. Sympos. Biocomp. (1997) PMID: 9390290Google Scholar
  18. 18.
    Davidson, E., Rast, J., Oliveri, P., Ransick, A., Calestani, C., Yuh, C., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown, C., Livi, C., Lee, P., Revilla, R., Rust, A., Pan, Z., Schilstra, M., Clarke, P., Arnone, M., Rowen, L., Cameron, R., McClay, D., Hood, L., Bolouri, H.: A genomic regulatory network for development. Science 295(5560), 1669–1678 (2002) doi:10.1126/science.1069983 PMID: 11872831CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Benjamin J. Hescott
    • 1
  • Mark D. M. Leiserson
    • 1
  • Lenore J. Cowen
    • 1
  • Donna K. Slonim
    • 1
  1. 1.Department of Computer ScienceTufts UniversityUSA

Personalised recommendations