Advertisement

An Online Approach for Mining Collective Behaviors from Molecular Dynamics Simulations

  • Arvind Ramanathan
  • Pratul K. Agarwal
  • Maria Kurnikova
  • Christopher J. Langmead
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5541)

Abstract

Collective behavior involving distally separate regions in a protein is known to widely affect its function. In this paper, we present an online approach to study and characterize collective behavior in proteins as molecular dynamics simulations progress. Our representation of MD simulations as a stream of continuously evolving data allows us to succinctly capture spatial and temporal dependencies that may exist and analyze them efficiently using data mining techniques. By using multi-way analysis we identify (a) parts of the protein that are dynamically coupled, (b) constrained residues/ hinge sites that may potentially affect protein function and (c) time-points during the simulation where significant deviation in collective behavior occurred. We demonstrate the applicability of this method on two different protein simulations for barnase and cyclophilin A. For both these proteins we were able to identify constrained/ flexible regions, showing good agreement with experimental results and prior computational work. Similarly, for the two simulations, we were able to identify time windows where there were significant structural deviations. Of these time-windows, for both proteins, over 70% show collective displacements in two or more functionally relevant regions. Taken together, our results indicate that multi-way analysis techniques can be used to analyze protein dynamics and may be an attractive means to automatically track and monitor molecular dynamics simulations.

Keywords

Molecular Dynamic Simulation Reconstruction Error Collective Behavior Protein Dynamic Molecular Dynamic Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007)CrossRefGoogle Scholar
  2. 2.
    Agarwal, P.K.: Cis/trans isomerization in hiv-1 capsid protein catalyzed by cyclophilin a: Insights from computational and theoretical studies. Proteins: Struct., Funct., Bioinformatics 56, 449–463 (2004)CrossRefGoogle Scholar
  3. 3.
    Agarwal, P.K.: Enzymes: An integrated view of structure, dynamics and function. Microbial Cell Factories 5 (2006)Google Scholar
  4. 4.
    Agarwal, P.K., Billeter, S.R., Rajagopalan, P.T.R., Hammes-Schiffer, S., Benkovic, S.J.: Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. USA 99, 2794–2799 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Agarwal, P.K., Geist, A., Gorin, A.: Protein dynamics and enzymatic catalysis: Investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin a. Biochemistry 43(33), 10605–10618 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Transactions on Mathematical Software 32(4), 635–653 (2006)CrossRefGoogle Scholar
  8. 8.
    Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with sparse and factored tensors. SIAM Journal on Scientific Computing 30(1), 205–231 (2007)CrossRefGoogle Scholar
  9. 9.
    Bahar, I., Atilgan, A.R., Demirel, M.C., Erman, B.: Vibrational dynamics of folded proteins. significance of slow and fast modes in relation to function and stability. Phys. Rev. Lett. 80, 2733–2736 (1998)CrossRefGoogle Scholar
  10. 10.
    Bahar, I., Cui, Q.: Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems. Mathematical and Computational Biology Series. Chapman and Hall/ CRC, New York (2003)Google Scholar
  11. 11.
    Bahar, I., Rader, A.J.: Coarse grained normal mode analysis in structural biology. Cur. Op. Struct. Biol. 15, 1–7 (2005)CrossRefGoogle Scholar
  12. 12.
    Beazley, D.M., Lomdahl, P.S.: Lightweight computational steering of very large scale molecular dynamics simulations. In: Supercomputing 1996 proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM), Washington, DC, USA, p. 50. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  13. 13.
    Berendsen, H.J.C., Hayward, S.: Collective protein dynamics in relation to function. Current Opinion in Structural Biology 10(2), 165–169 (2000)CrossRefPubMedGoogle Scholar
  14. 14.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research 28, 235–242 (2002)CrossRefGoogle Scholar
  15. 15.
    Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E.: Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC Conference, p. 43 (2006)Google Scholar
  16. 16.
    Chodera, J.D., Singhal, N., Pander, V.S., Dill, K.A., Swope, W.C.: Automatic discovery of metastable states for the construction of markov models of macromolecular conformational dynamics. J. Chem. Phys. 126, 155101 (2007)CrossRefPubMedGoogle Scholar
  17. 17.
    DeLano, W.L.: The pymol molecular graphics system (2003)Google Scholar
  18. 18.
    Eisenmesser, E.Z., Bosco, D.A., Akke, M., Kern, D.: Enzyme dynamics during catalysis. Science 295(5559), 1520–1523 (2002)CrossRefPubMedGoogle Scholar
  19. 19.
    Fersht, A.R., Daggett, V.: Protein folding and unfolding at atomic resolution. Cell 108(4), 573–582 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Fersht, A.R., Matouschek, A., Sancho, J., Serrano, L., Vuilleumier, S.: Pathway of protein folding. Faraday Discuss 93, 183–193 (1992)CrossRefGoogle Scholar
  21. 21.
    Fersht, A.R.: Protein folding and stability: the pathway of folding of barnase. FEBS Letters 325(1-2), 5–16 (1993)CrossRefPubMedGoogle Scholar
  22. 22.
    Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucl. Acids Res. 26(18), 4280–4290 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gu, W., Eisenhauer, G., Kraemer, E., Schwan, K., Stasko, J., Vetter, J., Mallavarupu, N.: Falcon: on-line monitoring and steering of large-scale parallel programs. In: Symposium on the Frontiers of Massively Parallel Processing, p. 422 (1995)Google Scholar
  24. 24.
    Gussio, R., Pattabiraman, N., Kellogg, G.E., Zaharevitz, D.W.: Use of 3d qsar methodology for data mining the national cancer institute repository of small molecules: Application to hiv-1 reverse transcriptase inhibition. Methods 14, 255–263 (1998)CrossRefPubMedGoogle Scholar
  25. 25.
    Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. App. Stat. 28(1), 100–108 (1979)CrossRefGoogle Scholar
  26. 26.
    Hayward, S., Go, N.: Collective variable description of native protein dynamics. Annual Review of Physical Chemistry 46(1), 223–250 (1995)CrossRefPubMedGoogle Scholar
  27. 27.
    Hespenheide, B.M., Rader, A.J., Thorpe, M.F., Kuhn, L.A.: Identifying protein folding cores: observing the evolution of rigid and flexible regions during unfolding. J. Mol. Graph. and Model. 21, 195–207 (2002)CrossRefGoogle Scholar
  28. 28.
    Jacobs, D.J., Rader, A.J., Kuhn, L.A., Thorpe, M.F.: Protein flexibility predictions using graph theory. Proteins: Struct., Funct., Genet. 44(2), 150–165 (2001)CrossRefGoogle Scholar
  29. 29.
    Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)Google Scholar
  30. 30.
    Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002)CrossRefPubMedGoogle Scholar
  31. 31.
    Karplus, M., Kushick, J.N.: Method for estimating the configurational entropy of macromolecules. Macromolecules 14(2), 325–332 (1981)CrossRefGoogle Scholar
  32. 32.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. Technical report, Sandia National Laboratories (2007)Google Scholar
  33. 33.
    Lange, O.F., Grubmuller, H.: Full correlation analysis of conformational protein dynamics. Proteins: Struct., Funct. and Bioinformatics 70, 1294–1312 (2008)CrossRefGoogle Scholar
  34. 34.
    Lenaerts, T., Ferkinghoff-Borg, J., Stricher, F., Serrano, L., Schymkowitz, J.W.H., Rousseau, F.: Quantifying information transfer by protein domains: Analysis of the fyn sh2 domain structure. BMC Struct. Biol. 8, 43 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Malmodin, D., Billeter, M.: Multiway decomposition of nmr spectra with coupled evolution periods. J. Am. Chem. Soc. 127(39), 13486–13487 (2005)CrossRefPubMedGoogle Scholar
  36. 36.
    Mamonova, T., Hespenheide, B., Straub, R., Thorpe, M.F., Kurnikova, M.: Protein flexibility using constraints from molecular dynamics simulations. Phys. Biol. 2(4), S137–S147 (2005)CrossRefGoogle Scholar
  37. 37.
    Nolde, S.B., Arseniev, A.S., Yu, V., Billeter, M.: Essential domain motions in barnase revealed by md simulations. Proteins: Struct., Funct. and Bioinformatics 46(3), 250–258 (2003)CrossRefGoogle Scholar
  38. 38.
    Shao, J., Tanner, S.W., Thompson, N., Cheatham, T.E.: Clustering molecular dynamics trajectories: 1. characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation 3(6), 2312–2334 (2007)CrossRefPubMedGoogle Scholar
  39. 39.
    Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. J. Wiley and Sons, Ltd., Chichester (2004)CrossRefGoogle Scholar
  40. 40.
    Staykova, D., Fredriksson, J., Bermel, W., Billeter, M.A: ssignment of protein nmr spectra based on projections, multi-way decomposition and a fast correlation approach. Journal of Biomolecular NMR (2008)Google Scholar
  41. 41.
    Suel, G.M., Lockless, S.W., Wall, M.A., Ranganathan, R.: Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003)CrossRefPubMedGoogle Scholar
  42. 42.
    Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: Dynamic tensor analysis (2006)Google Scholar
  43. 43.
    Tao, D., Li, X., Wu, X., Hu, W., Stephen, J.M.: Supervised tensor learning. Knowledge and Information Systems 13, 42 (2007)CrossRefGoogle Scholar
  44. 44.
    Whiteley, W.: Rigidity of Molecular structures: generic and geometric analysis. In: Rigidity Theory and Applications. Kluwer Academic/ Plenum, New York (1999)Google Scholar
  45. 45.
    Yanagawa, H., Yoshida, K., Torigoe, C., Park, J.S., Sato, K., Shirai, T., Go, M.: Protein anatomy: functional roles of barnase module. J. Biol. Chem. 268(8), 5861–5865 (1993)PubMedGoogle Scholar
  46. 46.
    Yener, B., Acar, E., Aguis, P., Bennett, K., Vandenberg, S., Plopper, G.: Multiway modeling and analysis in stem cell systems biology. BMC Systems Biology 2(1), 63 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zavodszky, M.I., Lei, M., Thorpe, M.F., Day, A.R., Kuhn, L.A.: Modeling correlated main-chain motions in proteins for flexible molecular recognition. Proteins: Struct. Funct. and Bioinformatics 57(2), 243–261 (2004)CrossRefGoogle Scholar
  48. 48.
    Zhuravleva, A., Korzhnev, D.M., Nolde, S.B., Kay, L.E., Arseniev, A.S., Billeter, M., Orekhov, V.Y.: Propagation of dynamic changes in barnase upon binding of barstar: An nmr and computational study. Journal of Molecular Biology 367(4), 1079–1092 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arvind Ramanathan
    • 1
  • Pratul K. Agarwal
    • 2
  • Maria Kurnikova
    • 3
  • Christopher J. Langmead
    • 1
    • 4
  1. 1.Lane Center for Computational BiologyCarnegie Mellon UniversityUSA
  2. 2.Computational Biology Institute, and Computer Science and Mathematics DivisionOak Ridge National LaboratoryUSA
  3. 3.Chemistry DepartmentCarnegie Mellon UniversityUSA
  4. 4.Computer Science Department, School of Computer ScienceCarnegie Mellon UniversityUSA

Personalised recommendations