Advertisement

Computationally Sound Formalization of Rerandomizable RCCA Secure Encryption

  • Yusuke Kawamoto
  • Hideki Sakurada
  • Masami Hagiya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5458)

Abstract

Rerandomizing ciphertexts plays an important role in protecting privacy in security protocols such as mixnets. We investigate the relationship between formal and computational approaches to the analysis of the security protocols using a rerandomizable encryption scheme. We introduce a new method of dealing with composed randomnesses in an Abadi-Rogaway-style pattern, formalize a rerandomizable RCCA secure encryption scheme, and prove its computational soundness.

Keywords

Security Protocol Security Parameter Challenge Ciphertext Decryption Oracle Probabilistic Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Jürjens, J.: Formal eavesdropping and its computational interpretation. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 82–94. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Theory and Application of Cryptographic Techniques, pp. 83–107 (2002)Google Scholar
  4. 4.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: CCS 2007: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 185–194. ACM, New York (2007)Google Scholar
  6. 6.
    Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Comon-Lundh, H.: Soundness of abstract cryptography lecture notes (2007), http://www.lsv.ens-cachan.fr/~comon/Soundness/
  8. 8.
    Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. JCS 14(1), 1–43 (2006)CrossRefGoogle Scholar
  9. 9.
    Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally sound symbolic secrecy in the presence of hash functions. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–207 (1983)CrossRefzbMATHGoogle Scholar
  12. 12.
    Garcia, F.D., van Rossum, P.: Sound computational interpretation of symbolic hashes in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 33–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Herzog, J.: A computational interpretation of Dolev-Yao adversaries. Theoretical Computer Science 340(1), 57–81 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Krawczyk, H.: The order of encryption and authentication for protecting communications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Micciancio, D., Panjwani, S.: Adaptive security of symbolic encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 169–187. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Shoup, V.: A proposal for an ISO standard for public key encryption. Input for Committee ISO/IEC JTC 1/SC 27 (2001)Google Scholar
  21. 21.
    Xue, R., Feng, D.: Toward practical anonymous rerandomizable RCCA secure encryptions. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 239–253. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yusuke Kawamoto
    • 1
  • Hideki Sakurada
    • 2
  • Masami Hagiya
    • 1
  1. 1.Department of Computer Science, Graduate School of Information Science and TechnologyUniversity of TokyoTokyoJapan
  2. 2.NTT Communication Science LaboratoriesNTT CorporationKanagawaJapan

Personalised recommendations