Advertisement

Computational Semantics for First-Order Logical Analysis of Cryptographic Protocols

  • Gergei Bana
  • Koji Hasebe
  • Mitsuhiro Okada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5458)

Abstract

This paper is concerned about relating formal and computational models of cryptography in case of active adversaries when formal security analysis is done with first order logic As opposed to earlier treatments, we introduce a new, fully probabilistic method to assign computational semantics to the syntax. The idea is to make use of the usual mathematical treatment of stochastic processes, hence be able to treat arbitrary probability distributions, non-negligible probability of collision, causal dependence or independence, and so on. We present this via considering a simple example of such a formal model, the Basic Protocol Logic by K. Hasebe and M. Okada [20], but we think the technique is suitable for a wide range of formal methods for protocol correctness proofs. We first review our framework of proof-system, BPL, for proving correctness of authentication protocols, and provide computational semantics. Then we give a full proof of the soundness theorem. We also comment on the differences of our method and that of Computational PCL.

Keywords

cryptographic protocols formal methods first order logic computational semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography. Journal of Cryptology 15(2), 103–127 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the presence of key-cycles. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Adão, P., Bana, G., Scedrov, A.: Computational and information-theoretic soundness and completeness of formal encryption. In: Proceedings of CSFW 2005, Aix-en-Provence, France, June 20–22, pp. 170–184. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  6. 6.
    Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations. In: Proceedings of CCS 2003, pp. 220–230. ACM Press, New York (2003)Google Scholar
  7. 7.
    Bana, G., Hasebe, K., Okada, M.: Computational semantics for basic protocol logic - a stochastic approach. In: Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp. 86–94. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 652–663. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual authentication and key exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authentication logic for reasoning about key distribution protocols. In: Proceedings of CSFW 2005, pp. 48–61 (2005)Google Scholar
  12. 12.
    Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compositional logic for security protocols. Journal of Computer Security 13, 423–482 (2005)CrossRefGoogle Scholar
  13. 13.
    Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M.: Probabilistic polynomial-time semantics for a protocol security logic. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 16–29. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (pcl). Electron. Notes Theor. Comput. Sci. 172, 311–358 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Dolev, D., Yao, A.C.: On the security of public-key protocols. IEEE Transactions on Information Theory 29(2), 198–208 (1983); Preliminary version presented at FOCS 1981CrossRefzbMATHGoogle Scholar
  16. 16.
    Durgin, N.A., Mitchell, J.C., Pavlovic, D.: A compositional logic for proving security properties of protocols. Journal of Computer Security 11, 677–721 (2003)CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Systems Sciences 28(2), 270–299 (1984); Preliminary version presented at STOC (1982) CrossRefzbMATHGoogle Scholar
  18. 18.
    Guttman, J.D., Thayer Fábrega, F.J.: Authentication tests. In: IEEE Symposium on Security and Privacy, pp. 96–109 (2002)Google Scholar
  19. 19.
    Guttman, J.D., Thayer, F.J., Zuck, L.D.: The faithfulness of abstract protocol analysis: Message authentication. In: Proceedings of CCS 2001, November 05–08, pp. 186–195. ACM Press, New York (2001)Google Scholar
  20. 20.
    Hasebe, K., Okada, M.: Completeness and counter-example generations of a basic protocol logic. In: Proceedings of RULE 2005, vol. 147(1), pp. 73–92. Elsevier Science, Amsterdam (2005), http://dx.doi.org/10.1016/j.entcs.2005.06.038 Google Scholar
  21. 21.
    Laud, P.: Symmetric encryption in automatic analyses for confidentiality against active adversaries. In: Proceedings of S&P 2004, May 9–12, pp. 71–85. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  22. 22.
    Lowe, G.: A hierarchy of authentication specifications. In: PCSFW: Proceedings of The 10th Computer Security Foundations Workshop. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  23. 23.
    Micciancio, D., Warinschi, B.: Completeness theorems for the Abadi-Rogaway logic of encrypted expressions. Journal of Computer Security 12(1), 99–130 (2004)CrossRefGoogle Scholar
  24. 24.
    Needham, R., Schroeder, M.: Using encryption for authentication in large networks of computers. Communications of the ACM 21(12), 993–999 (1978)CrossRefzbMATHGoogle Scholar
  25. 25.
    Woo, T., Lam, S.: Verifying authentication protocols: Methodology and example. In: Proceedings of the International Conference on Network Protocols (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gergei Bana
    • 1
  • Koji Hasebe
    • 2
  • Mitsuhiro Okada
    • 3
  1. 1.SQIG - Instituto de Telecomunicações and Department of Mathematics, ISTTechnical University of LisbonPortugal
  2. 2.Graduate School of Systems and Information EngineeringUniversity of TsukubaJapan
  3. 3.Department of PhilosophyKeio UniversityTokyoJapan

Personalised recommendations