Advertisement

A Model for HIV Spread in a South African Village

  • Shah Jamal Alam
  • Ruth Meyer
  • Emma Norling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5269)

Abstract

This paper describes an agent-based simulation model of the spread of HIV/AIDS in the Sub-Saharan region. The model is part of our studying social complexity in the Sekhukhune district of the Limpopo province in South Africa. The model presents a coherent framework and identifies the essential factors agent-based modellers need to take into account when modelling HIV spread. The necessary empirical data are drawn from the villagers’ accounts during our fieldtrip to the case study region and reports from the available epidemiological and demographic literature. The results presented here demonstrate how agent-based simulation can aid in a better understanding of this complex interplay of various factors responsible for the spread of the epidemic. Although the model is specific to the case study area, the general framework described in this paper can easily be extended and adapted for other regions.

Keywords

HIV/AIDS evidence-driven modelling sexual networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, S.J., Meyer, R., Ziervogel, G., Moss, S.: The Impact of HIV/AIDS in the Context of Socioeconomic Stressors: An Evidence-driven Approach. Journal of Artificial Societies and Social Simulation 10(4), 7 (2007), http://jasss.soc.surrey.ac.uk/10/4/7.html Google Scholar
  2. 2.
    Billari, F., Prskawetz, A., Fürnkranz, J.: The evolution of social norms: age norms on marriage. Max Planck Institute for Demographic Research, Rostock, Germany (2005)Google Scholar
  3. 3.
    Helleringer, S., Kohler, H.-P.: Sexual Network Structure and the Spread of HIV in Africa: Evidence from Likoma Island, Malawi. AIDS 21(17), 2323–2332 (2007)CrossRefGoogle Scholar
  4. 4.
    Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Phys. Rev. E. 64.4 (2001)Google Scholar
  5. 5.
    Koopman, J.S., et al.: The role of early HIV infection in the spread of HIV through populations. J. Acq Imm. Def. Syn. Hum. Retroviral 14, 249–258 (1997)Google Scholar
  6. 6.
    Kossinets, G.: Effects of missing data in social networks. Social Networks 28 (2006)Google Scholar
  7. 7.
    Liljeros, F., Edling, C.R., Amaral, L.A.N.: Sexual networks: implications for the transmission of sexually transmitted infections. Microsbes Infect., 189–196 (2003)Google Scholar
  8. 8.
    Liljeros, F., et al.: The Web of Human Sexual Contacts. Nature 411, 908–909 (2001)CrossRefGoogle Scholar
  9. 9.
    Merli, M.G., et al.: Modelling the spread of HIV/AIDS in China: The role of sexual transmission. Population Studies 60(1), 1–22 (2006)CrossRefGoogle Scholar
  10. 10.
    Newell, M., et al.: Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. The Lancet. 364, 1236–1243 (2004)CrossRefGoogle Scholar
  11. 11.
    Nordvik, M.K., Liljeros, F.: Number of Sexual Encounters Involving Intercourse and the Transmission of Sexually Transmitted Infections. Sex. Trans Dis. 33(6), 342–349 (2006)CrossRefGoogle Scholar
  12. 12.
    Rauner, M.S., et al.: Use of Discrete-Event Simulation to Evaluate Strategies for the Prevention of Mother-to-Child Transmission of HIV in Developing Countries. J. Operational Research Society 56, 222–233 (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    Rhee, A.: An Agent-based Approach to HIV/AIDS Modelling: A Case Study of Papua New Guinea. Master of Science Thesis. Massachusetts Institute of Technology (2006)Google Scholar
  14. 14.
    Schmitt, D.P.: Sociosexuality from Argentina to Zimbabwe: A 48-nation study of sex, culture, and strategies of human mating. Behavioral and Brain Sciences 28(2), 247–311 (2005)Google Scholar
  15. 15.
    Simão, J., Todd, P.M.: Emergent Patterns of Mate Choice in Human Populations. Artificial Life 9(4), 403–417 (2003)CrossRefGoogle Scholar
  16. 16.
    Sumodhee, C., et al.: Impact of Social Behaviors on HIV Epidemic: A Computer Simulation View. In: Proc. Intl. Conference on Computational Intelligence for Modelling, Control and Automation, pp. 550–556. IEEE Press, Los Alamitos (2005)Google Scholar
  17. 17.
    Wawer, M.J., et al.: Rates of HIV-1 Transmission per Coital Act, by Stage of HIV-1 Infection, in Rakai, Uganda. Journal of Infectious Diseases 191, 1403–1409 (2005)CrossRefGoogle Scholar
  18. 18.
    Watts, D.J., Strogatz, S.: Collective Dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  19. 19.
    Heuveline, P., Sallach, D., Howe, T.: The Structure of an Epidemic: Modelling AIDS Transmission in Southern Africa. In: Papers from Symposium on Agent-based Computational Modelling, Vienna, Austria (2003)Google Scholar
  20. 20.
    Alam, S.J., Edmonds, B., Meyer, R.: Identifying Structural Changes in Networks Generated from Agent-based Social Simulation Models. In: Proc. 10th Pacific RIM International Workshop on Multi-agent Systems (2007)Google Scholar
  21. 21.
    Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133(2), 165–195 (1996)zbMATHCrossRefGoogle Scholar
  22. 22.
    Bearman, P.S., Moody, J., Stovel, K.: Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks. American Journal of Sociology 110(1), 44–91 (2004)CrossRefGoogle Scholar
  23. 23.
    Ziervogel, G., Taylor, A.: Feeling Stressed: Integrating Climate Adaptation with Other Priorities in South Africa. Environment 50(2), 32–41 (2008)Google Scholar
  24. 24.
    Tawfik, A.Y., Farag, R.R.: Modeling the Spread of Preventable Diseases: Social Culture and Epidemiology. In: Proc. IFIP International Federation for Information Processing; Artificial Intelligence and Practice II, vol. 276, pp. 277–286. Springer, Boston (2008)Google Scholar
  25. 25.
    North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simulation 16(1) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shah Jamal Alam
    • 1
  • Ruth Meyer
    • 1
  • Emma Norling
    • 1
  1. 1.Centre for Policy ModellingManchester Metropolitan University Business SchoolManchesterU.K.

Personalised recommendations