Advertisement

A Holistic Approach for Performance Measurement and Analysis for Petascale Applications

  • Heike Jagode
  • Jack Dongarra
  • Sadaf Alam
  • Jeffrey Vetter
  • Wyatt Spear
  • Allen D. Malony
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5545)

Abstract

Contemporary high-end Terascale and Petascale systems are composed of hundreds of thousands of commodity multi-core processors interconnected with high-speed custom networks. Performance characteristics of applications executing on these systems are a function of system hardware and software as well as workload parameters. Therefore, it has become increasingly challenging to measure, analyze and project performance using a single tool on these systems. In order to address these issues, we propose a methodology for performance measurement and analysis that is aware of applications and the underlying system hierarchies. On the application level, we measure cost distribution and runtime dependent values for different components of the underlying programming model. On the system front, we measure and analyze information gathered for unique system features, particularly shared components in the multi-core processors. We demonstrate our approach using a Petascale combustion application called S3D on two high-end Teraflops systems, Cray XT4 and IBM Blue Gene/P, using a combination of hardware performance monitoring, profiling and tracing tools.

Keywords

Performance Analysis Performance Tools Profiling Tracing Trace files Petascale Applications Petascale Systems 

References

  1. 1.
    Brunst, H.: Integrative Concepts for Scalable Distributed Performance Analysis and Visualization of Parallel Programs, Ph.D Dissertation, Shaker Verlag (2008)Google Scholar
  2. 2.
    PAPI Documentation: http://icl.cs.utk.edu/papi
  3. 3.
  4. 4.
    Jurenz, M.: VampirTrace Software and Documentation, ZIH, TU Dresden: http://www.tu-dresden.de/zih/vampirtrace
  5. 5.
    VampirServer User Guide: http://www.vampir.eu
  6. 6.
    Top500 list: http://www.top500.org
  7. 7.
    Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the Open Trace Format (OTF). In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 526–533. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Applied numerical mathematics 35(3), 177–264 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Drongowski, P.: Basic Performance measurements for AMD Athlon 64 and AMD Opteron Processors (2006)Google Scholar
  10. 10.
    Software Optimization Guide for AMD Family 10h Processors, Pub. no. 40546 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Heike Jagode
    • 1
    • 2
  • Jack Dongarra
    • 1
    • 2
  • Sadaf Alam
    • 2
  • Jeffrey Vetter
    • 2
  • Wyatt Spear
    • 3
  • Allen D. Malony
    • 3
  1. 1.The University of TennesseeUSA
  2. 2.Oak Ridge National LaboratoryUSA
  3. 3.University of OregonUSA

Personalised recommendations