A Second Order Adjoint Method to Targeted Observations

  • Humberto C. Godinez
  • Dacian N. Daescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5545)

Abstract

The role of the second order adjoint in targeting strategies is studied and analyzed. Most targeting strategies use the first order adjoint to identify regions where additional information is of potential benefit to a data assimilation system. The first order adjoint posses a restriction on the targeting time for which the linear approximation accurately tracks the evolution of perturbation. Using second order adjoint information it is possible to maintain some accuracy for longer time intervals, which can lead to an increase on the target time. We propose the use of the dominant eigenvectors of the Hessian matrix as an indicator of the directions of maximal error growth for a given targeting functional. These vectors are a natural choice to be included in the targeting strategies given their mathematical properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langland, R.H., Gelaro, R., Rohaly, G.D., Shapiro, M.A.: Targeted observations in FASTEX: Adjoint-based targeting procedures and data impact experiments in IOP17 and IOP18. Q. J. R. Meteorol. Soc. 125, 3241–3270 (1999)CrossRefGoogle Scholar
  2. 2.
    Langland, R.H.: Issues in targeted observing. Q. J. R. Meteorol. Soc. 131, 3409–3425 (2005)CrossRefGoogle Scholar
  3. 3.
    Palmer, T.N., Gelaro, R., Barkmeijer, J., Buizza, R.: Singular Vectors, Metrics, and Adaptive Observations. J. Atmos. Sci. 55, 633–653 (1998)CrossRefGoogle Scholar
  4. 4.
    Buizza, R., Montani, A.: Targeting Observations Using Singular Vectors. J. Atmos. Sci. 56, 2965–2985 (1999)CrossRefGoogle Scholar
  5. 5.
    Baker, N.L., Daley, R.: Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q. J. R. Meteorol. Soc. 126, 1431–1454 (2000)CrossRefGoogle Scholar
  6. 6.
    Daescu, D.N.: On the Sensitivity Equations of Four-Dimensional Variational (4D-Var) Data Assimilation. Mon. Wea. Rev. 136, 3050–3065 (2008)CrossRefGoogle Scholar
  7. 7.
    Le Dimet, F.X., Navon, I.M., Daescu, D.N.: Second-Order Information in Data Assimilation. Mon. Wea. Rev. 130, 629–648 (2002)CrossRefGoogle Scholar
  8. 8.
    Kalnay, E.: Atmospheric Modeling, Data Assimilation, and Predictability, p. 364. Cambridge University Press, Cambridge (2002)Google Scholar
  9. 9.
    Le Dimet, F.X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A, 97–110 (1986)CrossRefGoogle Scholar
  10. 10.
    Daescu, D.N., Navon, I.M.: Efficiency of a POD-based reduced second-order adjoint model in 4D-Var data assimilation. Int. J. Numer. Meth. Fluids 53, 985–1004 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lin, S.J., Chao, W.C., Sud, Y.C., Walker, G.K.: A Class of the van Leer-type Transport Schemes and Its Application to the Moisture Transport in a General Circulation Model. Mon. Wea. Rev. 122, 1575–1593 (1994)CrossRefGoogle Scholar
  12. 12.
    Giering, R.: Tangent linear and Adjoint Model Compiler, Users manual. Center for Global Change Sciences, Department of Earth, Atmospheric, and Planetary Science. MIT, Cambridge (1997)Google Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)MATHGoogle Scholar
  14. 14.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society for Industrial and Applied Mathematics, Philadelphia (1998)Google Scholar
  15. 15.
    Daescu, D.N., Navon, I.M.: Adaptive observations in the context of 4D-Var data assimilation. Meteorol. Atmos. Phys. 85, 205–226 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Humberto C. Godinez
    • 1
  • Dacian N. Daescu
    • 1
  1. 1.Department of Mathematics and StatisticsPortland State UniversityPortland 

Personalised recommendations