Advertisement

A 3D Vector-Additive Iterative Solver for the Anisotropic Inhomogeneous Poisson Equation in the Forward EEG problem

  • Vasily Volkov
  • Aleksei Zherdetsky
  • Sergei Turovets
  • Allen Malony
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5544)

Abstract

We describe a novel 3D finite difference method for solving the anisotropic inhomogeneous Poisson equation based on a multi-component additive implicit method with a 13-point stencil. The serial performance is found to be comparable to the most efficient solvers from the family of preconditioned conjugate gradient (PCG) algorithms. The proposed multi-component additive algorithm is unconditionally stable in 3D and amenable for transparent domain decomposition parallelization up to one eighth of the total grid points in the initial computational domain. Some validation and numerical examples are given.

References

  1. 1.
    Arridge, S.R.: Optical Tomography in Medical Imaging. Inverse Problems 15, R41–R93 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Gulrajani, R.M.: Bioelectricity and Biomagnetism. John Wiley & Sons, New York (1998)Google Scholar
  3. 3.
    Hallez, H., et al.: Review on Solving the Forward Problem in EEG Source Analysis. Journal of Neuroengineering and Rehabilitation 4, 46 (2007)CrossRefGoogle Scholar
  4. 4.
    General-Purpose Computation Using Graphics Hardware, http://www.gpgpu.org
  5. 5.
    Qin, C., Kang, N., Cao, N.: Performance evaluation of anisotropic diffusion simulation based tractography on phantom images. In: 45th Annual Southeast Regional Conference ACMSE 2007, pp. 521–522. ACM, New York (2007)CrossRefGoogle Scholar
  6. 6.
    Salman, A., Turovets, S., Malony, A., Volkov, V.: Multi-Cluster, Mix-Mode Computational Modeling of Human Head Conductivity. In: Mueller, M.S., et al. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315, pp. 119–130. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Abrashin, V.N., Egorov, A.A., Zhadaeva, N.G.: On the Convergence Rate of Additive Iterative Methods. Differential Equations 37, 867–879 (2001)MathSciNetGoogle Scholar
  8. 8.
    Abrashin, V.N., Egorov, A.A., Zhadaeva, N.G.: On a Class of Additive Iterative Methods. Differential Equations 37, 1751–1760 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Volkov, V.M., Lechtikov, S.N.: Multicomponent Iterative Methods of Decomposition Type for Two-Dimensional Stationary Problems of Dissipative Transfer. Differential Equations 33, 927–933 (1997)Google Scholar
  10. 10.
    LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  11. 11.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: The Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)Google Scholar
  12. 12.
    Barrett, R., Berry, M., Chan, T.F., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)Google Scholar
  13. 13.
    Freund, R., Nachtigal, N.: QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems. Numer. Math. 60, 315–339 (1991)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vasily Volkov
    • 1
  • Aleksei Zherdetsky
    • 1
  • Sergei Turovets
    • 2
  • Allen Malony
    • 2
  1. 1.Department of Mathematics and MechanicsBelarusian State UniversityMinskRepublic of Belarus
  2. 2.NeuroInformatics CenterUniversity of OregonEugeneUSA

Personalised recommendations