Advertisement

Complex System Simulations with QosCosGrid

  • Krzystof Kurowski
  • Walter de Back
  • Werner Dubitzky
  • Laszlo Gulyás
  • George Kampis
  • Mariusz Mamonski
  • Gabor Szemes
  • Martin Swain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5544)

Abstract

The aim of the QosCosGrid project is to bring supercomputer-like performance and structure to cross-cluster computations. To support parallel complex systems simulations, QosCosGrid provides six reusable templates that may be instantiated with simulation-specific code to help with developing parallel applications using the ProActive Java library. The templates include static and dynamic graphs, cellular automata and mobile agents. In this work, we show that little performance is lost when a ProActive cellular automata simulation is executed across two distant administrative domains. We describe the middleware developed in the QosCosGrid project, which provides advance reservation and resource co-allocation functionality as well as support for parallel applications based on OpenMPI (for C/C++ and Fortran) or ProActive for Java. In particular, we describe how we modified ProActive Java to enable inter- cluster communication through firewalls. The bulk of the QosCosGrid software is available in open source from the QosCosGrid project website: www.qoscosgrid.org.

Keywords

Grid computing complex system parallel applications ProActive Java advance reservation co-allocation modeling and simulation 

References

  1. 1.
    Special edition: Complex Systems. Science 284, 5411, 1–212 (1999)Google Scholar
  2. 2.
    Coti, C., Herault, T., Peyronnet, S., Rezmerita, A., Cappello, F.: Grid Services for MPI Cluster Computing and the Grid. In: 8th IEEE International Symposium on Cluster Computing and the Grid (CCGRID 2008), pp. 417–424 (2008)Google Scholar
  3. 3.
    North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the Repast Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simulation 16(1), 1–25 (2006)CrossRefGoogle Scholar
  4. 4.
    Caromel, D., Delbe, C., di Costanzo, A., Leyton, M.: ProActive: an Integrated Platform for Programming and Running Applications on Grids and P2P systems. Computational Methods in Science and Technology 12(1), 69–77 (2006)Google Scholar
  5. 5.
    Farmer, J.D., Toffoli, T., Wolfram, S. (eds.): Cellular Automata. Elsevier, Amsterdam (1984)zbMATHGoogle Scholar
  6. 6.
    Kravtsov, V., Schuster, A., Carmeli, D., Kurowski, K., Dubitzky, W.: Grid-enabling complex system applications with QosCosGrid: An architectural perspective. In: Proceedings of The International Conference on Grid Computing and Applications (GCA 2008), Las-Vegas, USA (2008)Google Scholar
  7. 7.
    Elmroth, E., Tordsson, J.: Grid resource brokering algorithms enabling advance reservations and resource selection based on performance predictions. Fut. Gen. Comput. Sys. 24(6), 585–593 (2008)CrossRefGoogle Scholar
  8. 8.
    Kyriazis, D., Tserpes, K., Menychtas, A., Litke, A., Varvarigou, T.: An innovative workflow mapping mechanism for Grids in the frame of Quality of Service. Fut. Gen. Comput. Sys. 24(6), 498–511 (2008)CrossRefGoogle Scholar
  9. 9.
    Frey, J., Tannenbaum, T., Mirnon, L., Foster, I., Tuecke, S.: Condor-G: A Computation Management Agent for Multi-Institutional Grids. Cluster Computing 3, 237–246 (2002)CrossRefGoogle Scholar
  10. 10.
    Abramson, D., Buyya, R., Giddy, J.: A computational economy for grid computing and its implementation in the Nimrod-G resource broker. Fut. Gen. Comput. Sys. 18(8), 1061–1074 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Mateos, C., Zunino, A., Campo, M.: A survey on approaches to gridification. Softw., Pract. Exper. 38(5), 523–556 (2008)CrossRefGoogle Scholar
  12. 12.
    Wrzesinska, G., Maassen, J., Verstoep, K., Bal, H.E.: Satin++: Divide-and-Share on the Grid. In: Second IEEE International Conference on e-Science and Grid Computing (e-Science 2006) (2006)Google Scholar
  13. 13.
    van Nieuwpoort, R.V., Maassen, J., Wrzesinska, G., Hofman, R., Jacobs, C., Kielmann, T., Bal, H.E., Henri, E.: Bal: Ibis: a Flexible and Efficient Java based Grid Programming Environment. Concurrency and Computation: Practice and Experience 17(7-8), 1079–1107 (2005)CrossRefGoogle Scholar
  14. 14.
    Maia, P.H., Mendonça, N.C., Furtado, V., Cirne, W., Saikoski, K.: A process for separation of crosscutting grid concerns. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, Dijon, France, April 23 - 27, 2006, pp. 1569–1574. ACM, New York (2006)CrossRefGoogle Scholar
  15. 15.
    Gagliardiand, F., Jones, B., Grey, F., Bgin, M.-E., Heikkurinen, M.: Building an infrastructure for scientific grid computing: Status and goals of the EGEE project. In: Philosophical Transactions A of the Royal Society: Mathematical, Physical and Engineering Sciences, vol. 363(833), pp. 1729–1742 (2005)Google Scholar
  16. 16.
    Hovestadt, M.: Operation of an SLA-aware grid fabric. IEEE Trans. Neural Networks. 2(6), 550–557 (2006)Google Scholar
  17. 17.
    Lederer, H., Hatzky, R., Tisma, R., Bottino, A., Jenko, F.: Hyperscaling of plasma turbulence simulations in DEISA. In: Proceedings of the 5th IEEE Workshop on Challenges of Large Applications in Distributed Environments, Monterey, California, pp. 19–26 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Krzystof Kurowski
    • 4
    • 5
  • Walter de Back
    • 2
  • Werner Dubitzky
    • 3
  • Laszlo Gulyás
    • 1
    • 2
  • George Kampis
    • 2
  • Mariusz Mamonski
    • 4
  • Gabor Szemes
    • 1
    • 2
  • Martin Swain
    • 3
  1. 1.AITIA International Inc.BudapestHungary
  2. 2.Collegium Budapest – Institute for Advanced StudyBudapestHungary
  3. 3.University of UlsterColeraineUnited Kingdom
  4. 4.Poznan Supercomputing and Networking CenterPoznanPoland
  5. 5.Institute for Molecular BioscienceUniversity of QueenslandAustralia

Personalised recommendations