Efficient Robust Private Set Intersection

  • Dana Dachman-Soled
  • Tal Malkin
  • Mariana Raykova
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5536)

Abstract

Computing Set Intersection privately and efficiently between two mutually mistrusting parties is an important basic procedure in the area of private data mining. Assuring robustness, namely, coping with potentially arbitrarily misbehaving (i.e., malicious) parties, while retaining protocol efficiency (rather than employing costly generic techniques) is an open problem. In this work the first solution to this problem is presented.

Keywords

Set Intersection Secure Two-party Computation Cryptographic Protocols Privacy Preserving Data Mining 

References

  1. 1.
    Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pp. 86–97. ACM, New York (2003)Google Scholar
  2. 2.
    Berlekamp, E.: Factoring polynomials over large finite fields. Mathematics of Computation 24, 713–735 (1970)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the socialist millionaires problem. Discrete Applied Mathematics 111, 2001 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Camenisch, J., Zaverucha, G.: Private intersection of certified sets. In: Proceedings of Financial Cryptography 2009 (2009)Google Scholar
  5. 5.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13, 2000 (2000)MathSciNetMATHGoogle Scholar
  6. 6.
    Choi, S., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  8. 8.
    Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Communications of the ACM 39, 77–85 (1996)CrossRefGoogle Scholar
  9. 9.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Goldreich, O.: Foundations of cryptography: a primer. Found. Trends Theor. Comput. Sci. 1(1), 1–116 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Shafi, G., Silvio, M.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: STOC 1982: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp. 365–377. ACM, New York (1982)Google Scholar
  12. 12.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Impagliazzo, R., Yung, M.: Direct minimum knowledge computations. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51. Springer, Heidelberg (1988)Google Scholar
  14. 14.
    Jakobsson, M., Yung, M.: Proving without knowing: On oblivious, agnostic and blindfolded provers. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 186–200. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: TCC, pp. 577–594 (2009)Google Scholar
  16. 16.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/Crc Cryptography and Network Security Series. Chapman & Hall/CRC, Boca Raton (2007)MATHGoogle Scholar
  17. 17.
    Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology, 36–54 (2000)Google Scholar
  20. 20.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC 1999: Proceedings of the thirty-first annual ACM symposium on Theory of computing, pp. 245–254. ACM Press, New York (1999)CrossRefGoogle Scholar
  22. 22.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yao, A.C.-C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)Google Scholar
  25. 25.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dana Dachman-Soled
    • 1
  • Tal Malkin
    • 1
  • Mariana Raykova
    • 1
  • Moti Yung
    • 2
  1. 1.Columbia UniversityUSA
  2. 2.Columbia University and Google Inc.USA

Personalised recommendations