How to Extract and Expand Randomness: A Summary and Explanation of Existing Results

  • Yvonne Cliff
  • Colin Boyd
  • Juan Gonzalez Nieto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5536)

Abstract

We examine the use of randomness extraction and expansion in key agreement (KA) protocols to generate uniformly random keys in the standard model. Although existing works provide the basic theorems necessary, they lack details or examples of appropriate cryptographic primitives and/or parameter sizes. This has lead to the large amount of min-entropy needed in the (non-uniform) shared secret being overlooked in proposals and efficiency comparisons of KA protocols. We therefore summarize existing work in the area and examine the security levels achieved with the use of various extractors and expanders for particular parameter sizes. The tables presented herein show that the shared secret needs a min-entropy of at least 292 bits (and even more with more realistic assumptions) to achieve an overall security level of 80 bits using the extractors and expanders we consider. The tables may be used to find the min-entropy required for various security levels and assumptions. We also find that when using the short exponent theorems of Gennaro et al., the short exponents may need to be much longer than they suggested.

Keywords

randomness extraction randomness expansion key agreement key exchange protocols pseudorandom function (PRF) universal hash function leftover hash lemma (LHL) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed Diffie-Hellman over non-DDH groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 361–381. Springer, Heidelberg (2004), http://eprint.iacr.org/2004/099 CrossRefGoogle Scholar
  2. 2.
    Chevassut, O., Fouque, P.A., Gaudry, P., Pointcheval, D.: The Twist-AUgmented technique for key exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006), http://eprint.iacr.org/2005/061 CrossRefGoogle Scholar
  3. 3.
    Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness extraction and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Fouque, P.A., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of distinguishing the MSB or LSB of secret keys in Diffie-Hellman schemes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 240–251. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Fouque, P.A., Pointcheval, D., Zimmer, S.: HMAC is a randomness extractor and applications to TLS. In: ASIACCS 2008: Proceedings of the, ACM symposium on Information, computer and communications security, pp. 21–32. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. Journal of Computer and System Sciences 61(3), 362–399 (2000), http://www-cse.ucsd.edu/~mihir/papers/cbc.html MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Goldreich, O.: The Foundations of Cryptography, vol. 1. Cambridge University Press, Cambridge (2001), http://wisdom.weizmann.ac.il/~oded/frag.html CrossRefMATHGoogle Scholar
  8. 8.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2005), http://shoup.net/ntb/ CrossRefMATHGoogle Scholar
  9. 9.
    Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The cascade construction and its concrete security. In: Proceedings of the 37th Annual Symposium on the Foundations of Computer Science, pp. 514–523. IEEE, Los Alamitos (1996)Google Scholar
  10. 10.
    NIST (National Institute for Standards and Technology): Advanced encryption standard (AES). FIPS PUB 197 (2001)Google Scholar
  11. 11.
    Bellare, M.: New proofs for NMAC and HMAC: Security without collision-resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Rivest, R.: The MD5 message-digest algorithm. Internet RFC 1321, Internet Engineering Task Force (1992)Google Scholar
  13. 13.
    Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    NIST (National Institute for Standards and Technology): Secure hash standard. FIPS PUB 180-2 (2000)Google Scholar
  15. 15.
    Preneel, B., van Oorschot, P.: On the security of iterated message authentication codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dodis, Y.: Exposure-Resilient Cryptography. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2000), http://theory.lcs.mit.edu/~yevgen/academic.html
  17. 17.
    Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal hashing. In: Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing—STOC 1990, pp. 235–243. ACM Press, New York (1990)Google Scholar
  18. 18.
    Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2. Internet RFC 5246, Internet Engineering Task Force (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yvonne Cliff
    • 1
  • Colin Boyd
    • 1
  • Juan Gonzalez Nieto
    • 1
  1. 1.Information Security InstituteQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations