Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys

  • Mark Manulis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5536)

Abstract

We enrich the classical notion of group key exchange (GKE) protocols by a new property that allows each pair of users to derive an independent peer-to-peer (p2p) key on-demand and without any subsequent communication; this, in addition to the classical group key shared amongst all the users. We show that GKE protocols enriched in this way impose new security challenges concerning the secrecy and independence of both key types. The special attention should be paid to possible collusion attacks aiming to break the secrecy of p2p keys possibly established between any two non-colluding users.

In our constructions we utilize the well-known parallel Diffie-Hellman key exchange (PDHKE) technique in which each party uses the same exponent for the computation of p2p keys with its peers. First, we consider PDHKE in GKE protocols where parties securely transport their secrets for the establishment of the group key. For this we use an efficient multi-recipient ElGamal encryption scheme. Further, based on PDHKE we design a generic compiler for GKE protocols that extend the classical Diffie-Hellman method. Finally, we investigate possible optimizations of these protocols allowing parties to re-use their exponents to compute both group and p2p keys, and show that not all such GKE protocols can be optimized.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Bohli, J.-M., Vasco, M.I.G., Steinwandt, R.: (Password) Authenticated Key Establishment: From 2-Party to Group. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 499–514. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-Based Group Key Exchange in a Constant Number of Rounds. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient Two-Party Password-Based Key Exchange Protocols in the UC Framework. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Boldyreva, A., Staddon, J.: Randomness Re-use in Multi-recipient Encryption Schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and Analysis of Authentication and Key Exchange Protocols. In: ACM STOC 1998, pp. 419–428. ACM Press, New York (1998)Google Scholar
  6. 6.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure Against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  8. 8.
    Biswas, G.P.: Diffie-Hellman Technique: Extended to Multiple Two-Party Keys and One Multi-Party Key. IET Inf. Sec. 2(1), 12–18 (2008)CrossRefGoogle Scholar
  9. 9.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably Authenticated Group Diffie-Hellman Key Exchange. In: ACM CCS 2001, pp. 255–264. ACM Press, New York (2001)Google Scholar
  12. 12.
    Bresson, E., Manulis, M.: Malicious Participants in Group Key Exchange: Key Control and Contributiveness in the Shadow of Trust. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 395–409. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Bresson, E., Manulis, M.: Contributory Group Key Exchange in the Presence of Malicious Participants. IET Inf. Sec. 2(3), 85–93 (2008)CrossRefGoogle Scholar
  14. 14.
    Bresson, E., Manulis, M.: Securing Group Key Exchange against Strong Corruptions. In: ACM ASIACCS 2008, pp. 249–260. ACM Press, New York (2008)Google Scholar
  15. 15.
    Bresson, E., Manulis, M., Schwenk, J.: On Security Models and Compilers for Group Key Exchange Protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 292–307. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Desmedt, Y., Lange, T.: Revisiting Pairing Based Group Key Exchange. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 53–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Tran. on Inf. Th. 22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Dutta, R., Barua, R., Sarkar, P.: Provably Secure Authenticated Tree Based Group Key Agreement. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 92–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Gamal, T.E.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  24. 24.
    Ingemarsson, I., Tang, D.T., Wong, C.K.: A Conference Key Distribution System. IEEE Tran. on Inf. Th. 28(5), 714–719 (1982)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Jarecki, S., Kim, J., Tsudik, G.: Authentication for Paranoids: Multi-party Secret Handshakes. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 325–339. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Jarecki, S., Kim, J., Tsudik, G.: Group Secret Handshakes Or Affiliation-Hiding Authenticated Group Key Agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 287–308. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Jeong, I.R., Lee, D.H.: Parallel Key Exchange. J. of Univ. Comp. Sci. 14(3), 377–396 (2008)MathSciNetMATHGoogle Scholar
  28. 28.
    Katz, J., Shin, J.S.: Modeling Insider Attacks on Group Key-Exchange Protocols. In: ACM CCS 2005, pp. 180–189. ACM Press, New York (2005)Google Scholar
  29. 29.
    Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Kim, H.-J., Lee, S.-M., Lee, D.H.: Constant-Round Authenticated Group Key Exchange for Dynamic Groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 245–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Kim, Y., Perrig, A., Tsudik, G.: Group Key Agreement Efficient in Communication. IEEE Tran. on Comp. 53(7), 905–921 (2004)CrossRefGoogle Scholar
  32. 32.
    Kim, Y., Perrig, A., Tsudik, G.: Tree-Based Group Key Agreement. ACM Trans. on Inf. and Syst. Sec. 7(1), 60–96 (2004)CrossRefGoogle Scholar
  33. 33.
    Kurosawa, K.: Multi-Recipient Public-Key Encryption with Shortened Ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Manulis, M.: Security-Focused Survey on Group Key Exchange Protocols. Cryptology ePrint Archive, Report 2006/395 (2006)Google Scholar
  36. 36.
    Mayer, A., Yung, M.: Secure Protocol Transformation via “Expansion”: From Two-Party to Groups. In: ACM CCS 1999, pp. 83–92. ACM Press, New York (1999)Google Scholar
  37. 37.
    Nam, J., Paik, J., Kim, U.-M., Won, D.: Constant-Round Authenticated Group Key Exchange with Logarithmic Computation Complexity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 158–176. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Shoup, V.: On Formal Models for Secure Key Exchange (Version 4). TR RZ 3120, IBM Research (1999)Google Scholar
  39. 39.
    Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.J.: A Secure Audio Teleconference System. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520–528. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  40. 40.
    Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman Key Distribution Extended to Group Communication. In: ACM CCS 1996, pp. 31–37. ACM Press, New York (1996)Google Scholar
  41. 41.
    Wolf, S.: Information-Theoretically and Computationally Secure Key Agreement in Cryptography. PhD thesis, ETH Zürich (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mark Manulis
    • 1
  1. 1.Cryptographic Protocols Group Department of Computer ScienceTU Darmstadt & CASEDGermany

Personalised recommendations