Motion Interpolation with Bennett Biarcs

  • Hans-Peter Schröcker
  • Bert Jüttler


We present an interpolation scheme for first order Hermite motion data (two positions with associated instantaneous screws specifying the tangent vector fields) that is based on a generalization of the classic biarc construction to curves on quadrics. The result is a sequence of Bennett motions. These motions possess several properties that make them particularly useful for motion interpolation, especially for applications requiring collision detection. We suggest methods for choosing the free parameter that determines the interpolating pair of Bennett motions and we demonstrate how to obtain an interpolation algorithm which is invariant with respect to changes in the moving and the fixed coordinate frame.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, J.E., On the motion geometry of the Bennett linkage. In Proc. 8th Int. Conf. on Engineering, Computer Graphics and Descriptive Geometry, 433–437, Austin TX (1998)Google Scholar
  2. 2.
    Bennett, G.T., A new mechanism. Engineering 76, 777–778 (1903)Google Scholar
  3. 3.
    Bennett, G.T., The skew isogramm-mechanism. Proc. London Math. Soc. (2nd series) 13, 151–173 (1913–1914)Google Scholar
  4. 4.
    Bottema, O. and Roth, B., Theoretical Kinematics. Dover (1990)Google Scholar
  5. 5.
    Brunnthaler, K., Synthesis of 4R Linkages Using Kinematic Mapping. Ph.D. thesis, University Innsbruck (2007)Google Scholar
  6. 6.
    Brunnthaler, K., Schröcker, H.-P., and Husty, M., A new method for the synthesis of Bennett mechanisms. In Proc. Int. Workshop on Computational Kinematics, Cassino (2005)Google Scholar
  7. 7.
    Fuhs, W. and Stachel, H., Circular pipe-connections. Comput. Graphics 12(1), 53–57 (1988)Google Scholar
  8. 8.
    Husty, M. and Schröcker, H.-P., Algebraic geometry and kinematics. In I. Emiris, F. Sottile, and T. Theobald (eds.) Nonlinear Computational Geometry, IMA (accepted for publication)Google Scholar
  9. 9.
    Jung, S., Hong, M., and Choi, M.-H., An adaptive collision detection and resolution for deformable objects using spherical implicit surface. In V. Sunderam et al. (eds.) ICCS 2005, volume 3514 of LNCS, 735–742, Springer (2005)Google Scholar
  10. 10.
    Jüttler, B. and Wagner, M.-G., Kinematics and animation. In G. Farin, J. Hoschek, and M.S. Kim (eds.) Handbook of Computer Aided Geometric Design, chapter 29, 723–748, Elsevier, Amsterdam (2002)Google Scholar
  11. 11.
    McCarthy, J.M., An Introduction to Theoretical Kinematics. MIT Press, Cambridge, Massachusetts, London, England (1990)Google Scholar
  12. 12.
    Peternell, M., G1-Hermite interpolation of ruled surfaces. In T. Lyche and L.L. Schumaker (eds.) Mathematical Methods in CAGD: Oslo 2000, 413–422, Vanderbilt Univ. Press., Nashville (2001)Google Scholar
  13. 13.
    Pottmann, H. and Wallner, J., Computational Line Geometry. Mathematics and visualization, Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Röschel, O., Rational motion design – a survey. Comput. Aided Design 30(3), 169–178 (1998)Google Scholar
  15. 15.
    Wang, W. and Joe, B., Orientation interpolation in quaternion space using spherical biarcs. In Proc. Graphics Interface ’93, 24–32 (1993)Google Scholar
  16. 16.
    Wang, W. and Joe, B., Interpolation on quadric surfaces with rational quadratic spline curves. Comput. Aided Geom. Design 14(3), 207–230 (1997)Google Scholar
  17. 17.
    Weiss, E.A., Einführung in die Liniengeometrie und Kinematik. Teubners Mathematische Leitfäden, B. G. Teubner, Leipzig, Berlin (1935)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hans-Peter Schröcker
    • 1
  • Bert Jüttler
    • 2
  1. 1.Unit Geometry and CADUniversity Innsbruck 
  2. 2.Institute of Applied GeometryJohannes Kepler University Linz 

Personalised recommendations