Advertisement

Sensitivity and Dexterity Comparison of 3-RRR planar parallel manipulators

  • Nicolas Binaud
  • Stéphane Caro
  • Philippe Wenger
Conference paper

Abstract

This paper deals with the sensitivity and dexterity comparison of 3-RRR planar parallel manipulators. First, the sensitivity coefficients of the pose of the moving platform of the manipulator to variations in its geometric parameters and actuated variables are derived and expressed algebraically. Moreover, two global sensitivity indices are determined, one related to the orientation of the moving platform of the manipulator and another one related to its position. The dexterity of the manipulator is also studied by means of the conditioning number of its normalized kinematic Jacobian matrix. Finally, the sensitivity of a 3-RRR PPM is analyzed in detail to compare the sensitivity of its best working mode to its dexterity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caro, S., Wenger, P., Bennis, F., and Chablat, D. (2006). “Sensitivity Analysis of the Orthoglide, A 3-DOF Translational Parallel Kinematics Machine,” ASME Journal of Mechanical Design, 128, March, pp. 392-402.Google Scholar
  2. 2.
    Yu, A., Bonev, I.A., and Zsombor-Murray, P.J., (2008). Geometric approach to the accuracy analysis of a class of 3-DOF planar parallel robots. Mechanism and Machine Theory, 43, pp. 364–375.Google Scholar
  3. 3.
    Caro, S., Binaud, N., Wenger, P., (2008). Sensitivity Analysis of Planar Parallel Manipulators. ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, NY, USA.Google Scholar
  4. 4.
    Liua, P.A., Fanga, Y.F., Lub, T.-F., (2006). Classification and General Kinematic Models of 3-DOF Planar Parallel Manipulators. IEEE, International Conference on Computer-Aided Industrial Design and Conceptual Design.Google Scholar
  5. 5.
    Rakotomanga, N., Chablat, D., Caro, S., (2008). Kinetostatic Performance of a Planar Parallel Mechanism with Variable Actuation. ARK, International Symposium on Advances in Robot Kinematics.Google Scholar
  6. 6.
    Briot, S. and Bonev, I.A. (2008). “Accuracy Analysis of 3-DOF Planar Parallel Robots,” Mechanism and Machine Theory, 43, pp. 445–458.Google Scholar
  7. 7.
    Chablat, D., Wenger, P., (2001). Séparation des Solutions aux Modèles Géométriques Direct et Inverse pour les Manipulateurs Pleinement Parallèles. Mechanism and Machine Theory, 763–783.Google Scholar
  8. 8.
    Binaud, N., Caro, S. and Wenger, P. (2009). Analyse de Sensibilité de Manipulateurs Parallèles Planaires de Type 3-RRR. 11ème colloque AIP PRIMECA, 22–24 avril, La Plagne, France.Google Scholar
  9. 9.
    Golub, G. H., and Van Loan, C. F., (1989). Matrix Computations, The Johns Hopkins University Press, Baltimore.Google Scholar
  10. 10.
    Angeles, J., (2007). Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 3rd ed., 2007, Hardcover.Google Scholar
  11. 11.
    Ranjbaran, F., Angeles, J., Gonzales-Palacios, M. A. and Patel, R. V., (1995). The Mechanical Design of a Seven-Axes Manipulator with Kinematic Isotropy, ASME Journal of Intelligent and Robotic Systems, 14(1), pp. 21–41.Google Scholar
  12. 12.
    Chablat, D., Wenger, P., Caro, S. and Angeles, J., (2002). The Isoconditioning Loci of Planar Three-Dof Parallel Manipulators, Proceedings of the ASME 2002 Design Engineering Technical Conferences, Montreal, Canada.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nicolas Binaud
    • 1
  • Stéphane Caro
    • 1
  • Philippe Wenger
    • 1
  1. 1.IRCCyNNantesFrance

Personalised recommendations